| Metamath
Proof Explorer Theorem List (p. 164 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | divalglem0 16301 | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ ⇒ ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) | ||
| Theorem | divalglem1 16302 | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 ⇒ ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) | ||
| Theorem | divalglem2 16303* | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ inf(𝑆, ℝ, < ) ∈ 𝑆 | ||
| Theorem | divalglem4 16304* | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} | ||
| Theorem | divalglem5 16305* | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} & ⊢ 𝑅 = inf(𝑆, ℝ, < ) ⇒ ⊢ (0 ≤ 𝑅 ∧ 𝑅 < (abs‘𝐷)) | ||
| Theorem | divalglem6 16306 | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝑋 ∈ (0...(𝐴 − 1)) & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1))) | ||
| Theorem | divalglem7 16307 | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) | ||
| Theorem | divalglem8 16308* | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → 𝑋 = 𝑌))) | ||
| Theorem | divalglem9 16309* | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} & ⊢ 𝑅 = inf(𝑆, ℝ, < ) ⇒ ⊢ ∃!𝑥 ∈ 𝑆 𝑥 < (abs‘𝐷) | ||
| Theorem | divalglem10 16310* | Lemma for divalg 16311. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) | ||
| Theorem | divalg 16311* | The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use / or ⌊ or mod. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| Theorem | divalgb 16312* | Express the division algorithm as stated in divalg 16311 in terms of ∥. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)))) | ||
| Theorem | divalg2 16313* | The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) | ||
| Theorem | divalgmod 16314 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 16313 and divalgb 16312). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅))))) | ||
| Theorem | divalgmodcl 16315 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 16314. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | ||
| Theorem | modremain 16316* | The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) | ||
| Theorem | ndvdssub 16317 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 − 𝐾))) | ||
| Theorem | ndvdsadd 16318 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾))) | ||
| Theorem | ndvdsp1 16319 | Special case of ndvdsadd 16318. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 1))) | ||
| Theorem | ndvdsi 16320 | A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝑄 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ & ⊢ ((𝐴 · 𝑄) + 𝑅) = 𝐵 & ⊢ 𝑅 < 𝐴 ⇒ ⊢ ¬ 𝐴 ∥ 𝐵 | ||
| Theorem | 5ndvds3 16321 | 5 does not divide 3. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ¬ 5 ∥ 3 | ||
| Theorem | 5ndvds6 16322 | 5 does not divide 6. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ¬ 5 ∥ 6 | ||
| Theorem | flodddiv4 16323 | The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2))) | ||
| Theorem | fldivndvdslt 16324 | The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | ||
| Theorem | flodddiv4lt 16325 | The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | ||
| Theorem | flodddiv4t2lthalf 16326 | The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) | ||
| Syntax | cbits 16327 | Define the binary bits of an integer. |
| class bits | ||
| Syntax | csad 16328 | Define the sequence addition on bit sequences. |
| class sadd | ||
| Syntax | csmu 16329 | Define the sequence multiplication on bit sequences. |
| class smul | ||
| Definition | df-bits 16330* | Define the binary bits of an integer. The expression 𝑀 ∈ (bits‘𝑁) means that the 𝑀-th bit of 𝑁 is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.) |
| ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | ||
| Theorem | bitsfval 16331* | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) | ||
| Theorem | bitsval 16332 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsval2 16333 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsss 16334 | The set of bits of an integer is a subset of ℕ0. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (bits‘𝑁) ⊆ ℕ0 | ||
| Theorem | bitsf 16335 | The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ bits:ℤ⟶𝒫 ℕ0 | ||
| Theorem | bits0 16336 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | bits0e 16337 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → ¬ 0 ∈ (bits‘(2 · 𝑁))) | ||
| Theorem | bits0o 16338 | The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1))) | ||
| Theorem | bitsp1 16339 | The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) | ||
| Theorem | bitsp1e 16340 | The 𝑀 + 1-th bit of 2𝑁 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsp1o 16341 | The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsfzolem 16342* | Lemma for bitsfzo 16343. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀)) & ⊢ 𝑆 = inf({𝑛 ∈ ℕ0 ∣ 𝑁 < (2↑𝑛)}, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑁 ∈ (0..^(2↑𝑀))) | ||
| Theorem | bitsfzo 16343 | The bits of a number are all at positions less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀))) | ||
| Theorem | bitsmod 16344 | Truncating the bit sequence after some 𝑀 is equivalent to reducing the argument mod 2↑𝑀. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀))) | ||
| Theorem | bitsfi 16345 | Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) | ||
| Theorem | bitscmp 16346 | The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 16345, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1))) | ||
| Theorem | 0bits 16347 | The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| ⊢ (bits‘0) = ∅ | ||
| Theorem | m1bits 16348 | The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (bits‘-1) = ℕ0 | ||
| Theorem | bitsinv1lem 16349 | Lemma for bitsinv1 16350. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))) | ||
| Theorem | bitsinv1 16350* | There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 16346), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁) | ||
| Theorem | bitsinv2 16351* | There is an explicit inverse to the bits function for nonnegative integers, part 2. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛 ∈ 𝐴 (2↑𝑛)) = 𝐴) | ||
| Theorem | bitsf1ocnv 16352* | The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15732. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ ((bits ↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ◡(bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 (2↑𝑛))) | ||
| Theorem | bitsf1o 16353 | The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15732. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (bits ↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin) | ||
| Theorem | bitsf1 16354 | The bits function is an injection from ℤ to 𝒫 ℕ0. It is obviously not a bijection (by Cantor's theorem canth2 9043), and in fact its range is the set of finite and cofinite subsets of ℕ0. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ bits:ℤ–1-1→𝒫 ℕ0 | ||
| Theorem | 2ebits 16355 | The bits of a power of two. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (bits‘(2↑𝑁)) = {𝑁}) | ||
| Theorem | bitsinv 16356* | The inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘𝐴) = Σ𝑘 ∈ 𝐴 (2↑𝑘)) | ||
| Theorem | bitsinvp1 16357 | Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0))) | ||
| Theorem | sadadd2lem2 16358 | The core of the proof of sadadd2 16368. The intuitive justification for this is that cadd is true if at least two arguments are true, and hadd is true if an odd number of arguments are true, so altogether the result is 𝑛 · 𝐴 where 𝑛 is the number of true arguments, which is equivalently obtained by adding together one 𝐴 for each true argument, on the right side. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0))) | ||
| Definition | df-sad 16359* | Define the addition of two bit sequences, using df-had 1595 and df-cad 1608 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))}) | ||
| Theorem | sadfval 16360* | Define the addition of two bit sequences, using df-had 1595 and df-cad 1608 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) | ||
| Theorem | sadcf 16361* | The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → 𝐶:ℕ0⟶2o) | ||
| Theorem | sadc0 16362* | The initial element of the carry sequence is ⊥. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → ¬ ∅ ∈ (𝐶‘0)) | ||
| Theorem | sadcp1 16363* | The carry sequence (which is a sequence of wffs, encoded as 1o and ∅) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | ||
| Theorem | sadval 16364* | The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | ||
| Theorem | sadcaddlem 16365* | Lemma for sadcadd 16366. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → (∅ ∈ (𝐶‘𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))) | ||
| Theorem | sadcadd 16366* | Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) | ||
| Theorem | sadadd2lem 16367* | Lemma for sadadd2 16368. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))) | ||
| Theorem | sadadd2 16368* | Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) | ||
| Theorem | sadadd3 16369* | Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))) | ||
| Theorem | sadcl 16370 | The sum of two sequences is a sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0) | ||
| Theorem | sadcom 16371 | The adder sequence function is commutative. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) = (𝐵 sadd 𝐴)) | ||
| Theorem | saddisjlem 16372* | Lemma for sadadd 16375. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴 ∪ 𝐵))) | ||
| Theorem | saddisj 16373 | The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) | ||
| Theorem | sadaddlem 16374* | Lemma for sadadd 16375. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁)))) | ||
| Theorem | sadadd 16375 |
For sequences that correspond to valid integers, the adder sequence
function produces the sequence for the sum. This is effectively a proof
of the correctness of the ripple carry adder, implemented with logic
gates corresponding to df-had 1595 and df-cad 1608.
It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵))) | ||
| Theorem | sadid1 16376 | The adder sequence function has a left identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (𝐴 sadd ∅) = 𝐴) | ||
| Theorem | sadid2 16377 | The adder sequence function has a right identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (∅ sadd 𝐴) = 𝐴) | ||
| Theorem | sadasslem 16378 | Lemma for sadass 16379. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝐶 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) | ||
| Theorem | sadass 16379 | Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ∧ 𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶))) | ||
| Theorem | sadeq 16380 | Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | bitsres 16381 | Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ≥‘𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))) | ||
| Theorem | bitsuz 16382 | The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ≥‘𝑁))) | ||
| Theorem | bitsshft 16383* | Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛 − 𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁)))) | ||
| Definition | df-smu 16384* | Define the multiplication of two bit sequences, using repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) | ||
| Theorem | smufval 16385* | The multiplication of two bit sequences as repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) | ||
| Theorem | smupf 16386* | The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → 𝑃:ℕ0⟶𝒫 ℕ0) | ||
| Theorem | smup0 16387* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝑃‘0) = ∅) | ||
| Theorem | smupp1 16388* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
| Theorem | smuval 16389* | Define the addition of two bit sequences, using df-had 1595 and df-cad 1608 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) | ||
| Theorem | smuval2 16390* | The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘𝑀))) | ||
| Theorem | smupvallem 16391* | If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ (0..^𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (𝑃‘𝑀) = (𝐴 smul 𝐵)) | ||
| Theorem | smucl 16392 | The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 smul 𝐵) ⊆ ℕ0) | ||
| Theorem | smu01lem 16393* | Lemma for smu01 16394 and smu02 16395. (Contributed by Mario Carneiro, 19-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ¬ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = ∅) | ||
| Theorem | smu01 16394 | Multiplication of a sequence by 0 on the right. (Contributed by Mario Carneiro, 19-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (𝐴 smul ∅) = ∅) | ||
| Theorem | smu02 16395 | Multiplication of a sequence by 0 on the left. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (∅ smul 𝐴) = ∅) | ||
| Theorem | smupval 16396* | Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) | ||
| Theorem | smup1 16397* | Rewrite smupp1 16388 using only smul instead of the internal recursive function 𝑃. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
| Theorem | smueqlem 16398* | Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | smueq 16399 | Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | smumullem 16400 | Lemma for smumul 16401. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |