|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-gab | Structured version Visualization version GIF version | ||
| Description: Definition of generalized class abstractions: typically, 𝑥 is a bound variable in 𝐴 and 𝜑 and {𝐴 ∣ 𝑥 ∣ 𝜑} denotes "the class of 𝐴(𝑥)'s such that 𝜑(𝑥)". (Contributed by BJ, 4-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| df-bj-gab | ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | bj-cgab 36934 | . 2 class {𝐴 ∣ 𝑥 ∣ 𝜑} | 
| 5 | vy | . . . . . . 7 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑦 | 
| 7 | 3, 6 | wceq 1540 | . . . . 5 wff 𝐴 = 𝑦 | 
| 8 | 7, 1 | wa 395 | . . . 4 wff (𝐴 = 𝑦 ∧ 𝜑) | 
| 9 | 8, 2 | wex 1779 | . . 3 wff ∃𝑥(𝐴 = 𝑦 ∧ 𝜑) | 
| 10 | 9, 5 | cab 2714 | . 2 class {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | 
| 11 | 4, 10 | wceq 1540 | 1 wff {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: bj-gabss 36936 bj-gabeqis 36939 bj-elgab 36940 | 
| Copyright terms: Public domain | W3C validator |