Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gabss | Structured version Visualization version GIF version |
Description: Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024.) |
Ref | Expression |
---|---|
bj-gabss | ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐵 = 𝑦)) | |
2 | 1 | biimpd 228 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝑦 → 𝐵 = 𝑦)) |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → (𝐴 = 𝑦 → 𝐵 = 𝑦)) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | anim12d 608 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → ((𝐴 = 𝑦 ∧ 𝜑) → (𝐵 = 𝑦 ∧ 𝜓))) |
6 | 5 | aleximi 1835 | . . . 4 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → (∃𝑥(𝐴 = 𝑦 ∧ 𝜑) → ∃𝑥(𝐵 = 𝑦 ∧ 𝜓))) |
7 | 6 | alrimiv 1931 | . . 3 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → ∀𝑦(∃𝑥(𝐴 = 𝑦 ∧ 𝜑) → ∃𝑥(𝐵 = 𝑦 ∧ 𝜓))) |
8 | ss2ab 3989 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} ⊆ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ ∀𝑦(∃𝑥(𝐴 = 𝑦 ∧ 𝜑) → ∃𝑥(𝐵 = 𝑦 ∧ 𝜓))) | |
9 | 7, 8 | sylibr 233 | . 2 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} ⊆ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)}) |
10 | df-bj-gab 35049 | . 2 ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | |
11 | df-bj-gab 35049 | . 2 ⊢ {𝐵 ∣ 𝑥 ∣ 𝜓} = {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} | |
12 | 9, 10, 11 | 3sstr4g 3962 | 1 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 {cab 2715 ⊆ wss 3883 {bj-cgab 35048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-in 3890 df-ss 3900 df-bj-gab 35049 |
This theorem is referenced by: bj-gabssd 35051 |
Copyright terms: Public domain | W3C validator |