| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gabss | Structured version Visualization version GIF version | ||
| Description: Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024.) |
| Ref | Expression |
|---|---|
| bj-gabss | ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2740 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐵 = 𝑦)) | |
| 2 | 1 | biimpd 229 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝑦 → 𝐵 = 𝑦)) |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → (𝐴 = 𝑦 → 𝐵 = 𝑦)) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | anim12d 609 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → ((𝐴 = 𝑦 ∧ 𝜑) → (𝐵 = 𝑦 ∧ 𝜓))) |
| 6 | 5 | aleximi 1832 | . . . 4 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → (∃𝑥(𝐴 = 𝑦 ∧ 𝜑) → ∃𝑥(𝐵 = 𝑦 ∧ 𝜓))) |
| 7 | 6 | alrimiv 1927 | . . 3 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → ∀𝑦(∃𝑥(𝐴 = 𝑦 ∧ 𝜑) → ∃𝑥(𝐵 = 𝑦 ∧ 𝜓))) |
| 8 | ss2ab 4042 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} ⊆ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ ∀𝑦(∃𝑥(𝐴 = 𝑦 ∧ 𝜑) → ∃𝑥(𝐵 = 𝑦 ∧ 𝜓))) | |
| 9 | 7, 8 | sylibr 234 | . 2 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} ⊆ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)}) |
| 10 | df-bj-gab 36957 | . 2 ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | |
| 11 | df-bj-gab 36957 | . 2 ⊢ {𝐵 ∣ 𝑥 ∣ 𝜓} = {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} | |
| 12 | 9, 10, 11 | 3sstr4g 4017 | 1 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2714 ⊆ wss 3931 {bj-cgab 36956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ss 3948 df-bj-gab 36957 |
| This theorem is referenced by: bj-gabssd 36959 |
| Copyright terms: Public domain | W3C validator |