Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gabeqis | Structured version Visualization version GIF version |
Description: Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024.) |
Ref | Expression |
---|---|
bj-gabeqis.c | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
bj-gabeqis.f | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-gabeqis | ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝐵 ∣ 𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-gabeqis.c | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | 1 | adantl 483 | . . . . . 6 ⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
3 | simpl 484 | . . . . . 6 ⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑦) → 𝑢 = 𝑣) | |
4 | 2, 3 | eqeq12d 2753 | . . . . 5 ⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑦) → (𝐴 = 𝑢 ↔ 𝐵 = 𝑣)) |
5 | bj-gabeqis.f | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | adantl 483 | . . . . 5 ⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑦) → (𝜑 ↔ 𝜓)) |
7 | 4, 6 | anbi12d 632 | . . . 4 ⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑦) → ((𝐴 = 𝑢 ∧ 𝜑) ↔ (𝐵 = 𝑣 ∧ 𝜓))) |
8 | 7 | cbvexdvaw 2042 | . . 3 ⊢ (𝑢 = 𝑣 → (∃𝑥(𝐴 = 𝑢 ∧ 𝜑) ↔ ∃𝑦(𝐵 = 𝑣 ∧ 𝜓))) |
9 | 8 | cbvabv 2810 | . 2 ⊢ {𝑢 ∣ ∃𝑥(𝐴 = 𝑢 ∧ 𝜑)} = {𝑣 ∣ ∃𝑦(𝐵 = 𝑣 ∧ 𝜓)} |
10 | df-bj-gab 35258 | . 2 ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑢 ∣ ∃𝑥(𝐴 = 𝑢 ∧ 𝜑)} | |
11 | df-bj-gab 35258 | . 2 ⊢ {𝐵 ∣ 𝑦 ∣ 𝜓} = {𝑣 ∣ ∃𝑦(𝐵 = 𝑣 ∧ 𝜓)} | |
12 | 9, 10, 11 | 3eqtr4i 2775 | 1 ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝐵 ∣ 𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 {cab 2714 {bj-cgab 35257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-bj-gab 35258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |