Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabeqis Structured version   Visualization version   GIF version

Theorem bj-gabeqis 35053
Description: Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024.)
Hypotheses
Ref Expression
bj-gabeqis.c (𝑥 = 𝑦𝐴 = 𝐵)
bj-gabeqis.f (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-gabeqis {𝐴𝑥𝜑} = {𝐵𝑦𝜓}
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝐵   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem bj-gabeqis
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-gabeqis.c . . . . . . 7 (𝑥 = 𝑦𝐴 = 𝐵)
21adantl 481 . . . . . 6 ((𝑢 = 𝑣𝑥 = 𝑦) → 𝐴 = 𝐵)
3 simpl 482 . . . . . 6 ((𝑢 = 𝑣𝑥 = 𝑦) → 𝑢 = 𝑣)
42, 3eqeq12d 2754 . . . . 5 ((𝑢 = 𝑣𝑥 = 𝑦) → (𝐴 = 𝑢𝐵 = 𝑣))
5 bj-gabeqis.f . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
65adantl 481 . . . . 5 ((𝑢 = 𝑣𝑥 = 𝑦) → (𝜑𝜓))
74, 6anbi12d 630 . . . 4 ((𝑢 = 𝑣𝑥 = 𝑦) → ((𝐴 = 𝑢𝜑) ↔ (𝐵 = 𝑣𝜓)))
87cbvexdvaw 2043 . . 3 (𝑢 = 𝑣 → (∃𝑥(𝐴 = 𝑢𝜑) ↔ ∃𝑦(𝐵 = 𝑣𝜓)))
98cbvabv 2812 . 2 {𝑢 ∣ ∃𝑥(𝐴 = 𝑢𝜑)} = {𝑣 ∣ ∃𝑦(𝐵 = 𝑣𝜓)}
10 df-bj-gab 35049 . 2 {𝐴𝑥𝜑} = {𝑢 ∣ ∃𝑥(𝐴 = 𝑢𝜑)}
11 df-bj-gab 35049 . 2 {𝐵𝑦𝜓} = {𝑣 ∣ ∃𝑦(𝐵 = 𝑣𝜓)}
129, 10, 113eqtr4i 2776 1 {𝐴𝑥𝜑} = {𝐵𝑦𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  {cab 2715  {bj-cgab 35048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-bj-gab 35049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator