| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-bj-gab 36935 | . . 3
⊢ {𝐵 ∣ 𝑥 ∣ 𝜓} = {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} | 
| 2 | 1 | eleq2i 2833 | . 2
⊢ (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)}) | 
| 3 |  | bj-elgab.ex | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 4 |  | bj-elgab.nf | . . . . . . . . 9
⊢ (𝜑 → ∀𝑥𝜑) | 
| 5 | 4 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ∀𝑥𝜑) | 
| 6 |  | bj-elgab.nfa | . . . . . . . . . 10
⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| 7 |  | nfcvd 2906 | . . . . . . . . . . . 12
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | 
| 8 |  | id 22 | . . . . . . . . . . . 12
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | 
| 9 | 7, 8 | nfeqd 2916 | . . . . . . . . . . 11
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) | 
| 10 | 9 | nf5rd 2196 | . . . . . . . . . 10
⊢
(Ⅎ𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) | 
| 11 | 6, 10 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) | 
| 12 | 11 | imp 406 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ∀𝑥 𝑦 = 𝐴) | 
| 13 |  | 19.26 1870 | . . . . . . . 8
⊢
(∀𝑥(𝜑 ∧ 𝑦 = 𝐴) ↔ (∀𝑥𝜑 ∧ ∀𝑥 𝑦 = 𝐴)) | 
| 14 | 5, 12, 13 | sylanbrc 583 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ∀𝑥(𝜑 ∧ 𝑦 = 𝐴)) | 
| 15 |  | eqeq2 2749 | . . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐴)) | 
| 16 |  | eqcom 2744 | . . . . . . . . . 10
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | 
| 17 | 15, 16 | bitrdi 287 | . . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐴 = 𝐵)) | 
| 18 | 17 | anbi1d 631 | . . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝐵 = 𝑦 ∧ 𝜓) ↔ (𝐴 = 𝐵 ∧ 𝜓))) | 
| 19 | 18 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝐵 = 𝑦 ∧ 𝜓) ↔ (𝐴 = 𝐵 ∧ 𝜓))) | 
| 20 | 14, 19 | exbidh 1867 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓))) | 
| 21 | 20 | ex 412 | . . . . 5
⊢ (𝜑 → (𝑦 = 𝐴 → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓)))) | 
| 22 | 21 | alrimiv 1927 | . . . 4
⊢ (𝜑 → ∀𝑦(𝑦 = 𝐴 → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓)))) | 
| 23 |  | elabgt 3672 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦(𝑦 = 𝐴 → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓)))) → (𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓))) | 
| 24 | 3, 22, 23 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓))) | 
| 25 |  | bj-elgab.is | . . 3
⊢ (𝜑 → (∃𝑥(𝐴 = 𝐵 ∧ 𝜓) ↔ 𝜒)) | 
| 26 | 24, 25 | bitrd 279 | . 2
⊢ (𝜑 → (𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ 𝜒)) | 
| 27 | 2, 26 | bitrid 283 | 1
⊢ (𝜑 → (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝜒)) |