| Step | Hyp | Ref
| Expression |
| 1 | | df-bj-gab 36957 |
. . 3
⊢ {𝐵 ∣ 𝑥 ∣ 𝜓} = {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} |
| 2 | 1 | eleq2i 2827 |
. 2
⊢ (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)}) |
| 3 | | bj-elgab.ex |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 4 | | bj-elgab.nf |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥𝜑) |
| 5 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ∀𝑥𝜑) |
| 6 | | bj-elgab.nfa |
. . . . . . . . . 10
⊢ (𝜑 → Ⅎ𝑥𝐴) |
| 7 | | nfcvd 2900 |
. . . . . . . . . . . 12
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) |
| 8 | | id 22 |
. . . . . . . . . . . 12
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) |
| 9 | 7, 8 | nfeqd 2910 |
. . . . . . . . . . 11
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 10 | 9 | nf5rd 2197 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
| 11 | 6, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
| 12 | 11 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ∀𝑥 𝑦 = 𝐴) |
| 13 | | 19.26 1870 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 ∧ 𝑦 = 𝐴) ↔ (∀𝑥𝜑 ∧ ∀𝑥 𝑦 = 𝐴)) |
| 14 | 5, 12, 13 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ∀𝑥(𝜑 ∧ 𝑦 = 𝐴)) |
| 15 | | eqeq2 2748 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐴)) |
| 16 | | eqcom 2743 |
. . . . . . . . . 10
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 17 | 15, 16 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐴 = 𝐵)) |
| 18 | 17 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝐵 = 𝑦 ∧ 𝜓) ↔ (𝐴 = 𝐵 ∧ 𝜓))) |
| 19 | 18 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝐵 = 𝑦 ∧ 𝜓) ↔ (𝐴 = 𝐵 ∧ 𝜓))) |
| 20 | 14, 19 | exbidh 1867 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓))) |
| 21 | 20 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑦 = 𝐴 → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓)))) |
| 22 | 21 | alrimiv 1927 |
. . . 4
⊢ (𝜑 → ∀𝑦(𝑦 = 𝐴 → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓)))) |
| 23 | | elabgt 3656 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦(𝑦 = 𝐴 → (∃𝑥(𝐵 = 𝑦 ∧ 𝜓) ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓)))) → (𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓))) |
| 24 | 3, 22, 23 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ ∃𝑥(𝐴 = 𝐵 ∧ 𝜓))) |
| 25 | | bj-elgab.is |
. . 3
⊢ (𝜑 → (∃𝑥(𝐴 = 𝐵 ∧ 𝜓) ↔ 𝜒)) |
| 26 | 24, 25 | bitrd 279 |
. 2
⊢ (𝜑 → (𝐴 ∈ {𝑦 ∣ ∃𝑥(𝐵 = 𝑦 ∧ 𝜓)} ↔ 𝜒)) |
| 27 | 2, 26 | bitrid 283 |
1
⊢ (𝜑 → (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝜒)) |