![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version |
Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 36073 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 36135 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ ⟨[⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) ∪ {⟨ω, +∞⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ciomnn 36125 | . 2 class iω↪ℕ | |
2 | vn | . . . 4 setvar 𝑛 | |
3 | com 7854 | . . . 4 class ω | |
4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
5 | 4 | cv 1540 | . . . . . . . . 9 class 𝑟 |
6 | 2 | cv 1540 | . . . . . . . . . . 11 class 𝑛 |
7 | 6 | csuc 6366 | . . . . . . . . . 10 class suc 𝑛 |
8 | c1o 8458 | . . . . . . . . . 10 class 1o | |
9 | 7, 8 | cop 4634 | . . . . . . . . 9 class ⟨suc 𝑛, 1o⟩ |
10 | cltq 10852 | . . . . . . . . 9 class <Q | |
11 | 5, 9, 10 | wbr 5148 | . . . . . . . 8 wff 𝑟 <Q ⟨suc 𝑛, 1o⟩ |
12 | cnq 10846 | . . . . . . . 8 class Q | |
13 | 11, 4, 12 | crab 3432 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩} |
14 | c1p 10854 | . . . . . . 7 class 1P | |
15 | 13, 14 | cop 4634 | . . . . . 6 class ⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩ |
16 | cer 10858 | . . . . . 6 class ~R | |
17 | 15, 16 | cec 8700 | . . . . 5 class [⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R |
18 | c0r 10860 | . . . . 5 class 0R | |
19 | 17, 18 | cop 4634 | . . . 4 class ⟨[⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩ |
20 | 2, 3, 19 | cmpt 5231 | . . 3 class (𝑛 ∈ ω ↦ ⟨[⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) |
21 | cpinfty 36095 | . . . . 5 class +∞ | |
22 | 3, 21 | cop 4634 | . . . 4 class ⟨ω, +∞⟩ |
23 | 22 | csn 4628 | . . 3 class {⟨ω, +∞⟩} |
24 | 20, 23 | cun 3946 | . 2 class ((𝑛 ∈ ω ↦ ⟨[⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) ∪ {⟨ω, +∞⟩}) |
25 | 1, 24 | wceq 1541 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ ⟨[⟨{𝑟 ∈ Q ∣ 𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) ∪ {⟨ω, +∞⟩}) |
Colors of variables: wff setvar class |
This definition is referenced by: bj-iomnnom 36135 |
Copyright terms: Public domain | W3C validator |