| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version | ||
| Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 37252 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 37314 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciomnn 37304 | . 2 class iω↪ℕ | |
| 2 | vn | . . . 4 setvar 𝑛 | |
| 3 | com 7805 | . . . 4 class ω | |
| 4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
| 5 | 4 | cv 1540 | . . . . . . . . 9 class 𝑟 |
| 6 | 2 | cv 1540 | . . . . . . . . . . 11 class 𝑛 |
| 7 | 6 | csuc 6316 | . . . . . . . . . 10 class suc 𝑛 |
| 8 | c1o 8387 | . . . . . . . . . 10 class 1o | |
| 9 | 7, 8 | cop 4583 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
| 10 | cltq 10759 | . . . . . . . . 9 class <Q | |
| 11 | 5, 9, 10 | wbr 5095 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
| 12 | cnq 10753 | . . . . . . . 8 class Q | |
| 13 | 11, 4, 12 | crab 3397 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
| 14 | c1p 10761 | . . . . . . 7 class 1P | |
| 15 | 13, 14 | cop 4583 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
| 16 | cer 10765 | . . . . . 6 class ~R | |
| 17 | 15, 16 | cec 8629 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
| 18 | c0r 10767 | . . . . 5 class 0R | |
| 19 | 17, 18 | cop 4583 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
| 20 | 2, 3, 19 | cmpt 5176 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
| 21 | cpinfty 37274 | . . . . 5 class +∞ | |
| 22 | 3, 21 | cop 4583 | . . . 4 class 〈ω, +∞〉 |
| 23 | 22 | csn 4577 | . . 3 class {〈ω, +∞〉} |
| 24 | 20, 23 | cun 3897 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| 25 | 1, 24 | wceq 1541 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-iomnnom 37314 |
| Copyright terms: Public domain | W3C validator |