Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version |
Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 35368 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 35430 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ciomnn 35420 | . 2 class iω↪ℕ | |
2 | vn | . . . 4 setvar 𝑛 | |
3 | com 7712 | . . . 4 class ω | |
4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
5 | 4 | cv 1538 | . . . . . . . . 9 class 𝑟 |
6 | 2 | cv 1538 | . . . . . . . . . . 11 class 𝑛 |
7 | 6 | csuc 6268 | . . . . . . . . . 10 class suc 𝑛 |
8 | c1o 8290 | . . . . . . . . . 10 class 1o | |
9 | 7, 8 | cop 4567 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
10 | cltq 10614 | . . . . . . . . 9 class <Q | |
11 | 5, 9, 10 | wbr 5074 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
12 | cnq 10608 | . . . . . . . 8 class Q | |
13 | 11, 4, 12 | crab 3068 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
14 | c1p 10616 | . . . . . . 7 class 1P | |
15 | 13, 14 | cop 4567 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
16 | cer 10620 | . . . . . 6 class ~R | |
17 | 15, 16 | cec 8496 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
18 | c0r 10622 | . . . . 5 class 0R | |
19 | 17, 18 | cop 4567 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
20 | 2, 3, 19 | cmpt 5157 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
21 | cpinfty 35390 | . . . . 5 class +∞ | |
22 | 3, 21 | cop 4567 | . . . 4 class 〈ω, +∞〉 |
23 | 22 | csn 4561 | . . 3 class {〈ω, +∞〉} |
24 | 20, 23 | cun 3885 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
25 | 1, 24 | wceq 1539 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Colors of variables: wff setvar class |
This definition is referenced by: bj-iomnnom 35430 |
Copyright terms: Public domain | W3C validator |