| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version | ||
| Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 37179 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 37241 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciomnn 37231 | . 2 class iω↪ℕ | |
| 2 | vn | . . . 4 setvar 𝑛 | |
| 3 | com 7822 | . . . 4 class ω | |
| 4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
| 5 | 4 | cv 1539 | . . . . . . . . 9 class 𝑟 |
| 6 | 2 | cv 1539 | . . . . . . . . . . 11 class 𝑛 |
| 7 | 6 | csuc 6322 | . . . . . . . . . 10 class suc 𝑛 |
| 8 | c1o 8404 | . . . . . . . . . 10 class 1o | |
| 9 | 7, 8 | cop 4591 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
| 10 | cltq 10789 | . . . . . . . . 9 class <Q | |
| 11 | 5, 9, 10 | wbr 5102 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
| 12 | cnq 10783 | . . . . . . . 8 class Q | |
| 13 | 11, 4, 12 | crab 3402 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
| 14 | c1p 10791 | . . . . . . 7 class 1P | |
| 15 | 13, 14 | cop 4591 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
| 16 | cer 10795 | . . . . . 6 class ~R | |
| 17 | 15, 16 | cec 8646 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
| 18 | c0r 10797 | . . . . 5 class 0R | |
| 19 | 17, 18 | cop 4591 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
| 20 | 2, 3, 19 | cmpt 5183 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
| 21 | cpinfty 37201 | . . . . 5 class +∞ | |
| 22 | 3, 21 | cop 4591 | . . . 4 class 〈ω, +∞〉 |
| 23 | 22 | csn 4585 | . . 3 class {〈ω, +∞〉} |
| 24 | 20, 23 | cun 3909 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| 25 | 1, 24 | wceq 1540 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-iomnnom 37241 |
| Copyright terms: Public domain | W3C validator |