Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version |
Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 35295 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 35357 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ciomnn 35347 | . 2 class iω↪ℕ | |
2 | vn | . . . 4 setvar 𝑛 | |
3 | com 7687 | . . . 4 class ω | |
4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
5 | 4 | cv 1538 | . . . . . . . . 9 class 𝑟 |
6 | 2 | cv 1538 | . . . . . . . . . . 11 class 𝑛 |
7 | 6 | csuc 6253 | . . . . . . . . . 10 class suc 𝑛 |
8 | c1o 8260 | . . . . . . . . . 10 class 1o | |
9 | 7, 8 | cop 4564 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
10 | cltq 10545 | . . . . . . . . 9 class <Q | |
11 | 5, 9, 10 | wbr 5070 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
12 | cnq 10539 | . . . . . . . 8 class Q | |
13 | 11, 4, 12 | crab 3067 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
14 | c1p 10547 | . . . . . . 7 class 1P | |
15 | 13, 14 | cop 4564 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
16 | cer 10551 | . . . . . 6 class ~R | |
17 | 15, 16 | cec 8454 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
18 | c0r 10553 | . . . . 5 class 0R | |
19 | 17, 18 | cop 4564 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
20 | 2, 3, 19 | cmpt 5153 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
21 | cpinfty 35317 | . . . . 5 class +∞ | |
22 | 3, 21 | cop 4564 | . . . 4 class 〈ω, +∞〉 |
23 | 22 | csn 4558 | . . 3 class {〈ω, +∞〉} |
24 | 20, 23 | cun 3881 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
25 | 1, 24 | wceq 1539 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Colors of variables: wff setvar class |
This definition is referenced by: bj-iomnnom 35357 |
Copyright terms: Public domain | W3C validator |