![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version |
Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 36599 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 36661 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ciomnn 36651 | . 2 class iω↪ℕ | |
2 | vn | . . . 4 setvar 𝑛 | |
3 | com 7862 | . . . 4 class ω | |
4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
5 | 4 | cv 1533 | . . . . . . . . 9 class 𝑟 |
6 | 2 | cv 1533 | . . . . . . . . . . 11 class 𝑛 |
7 | 6 | csuc 6365 | . . . . . . . . . 10 class suc 𝑛 |
8 | c1o 8471 | . . . . . . . . . 10 class 1o | |
9 | 7, 8 | cop 4630 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
10 | cltq 10867 | . . . . . . . . 9 class <Q | |
11 | 5, 9, 10 | wbr 5142 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
12 | cnq 10861 | . . . . . . . 8 class Q | |
13 | 11, 4, 12 | crab 3427 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
14 | c1p 10869 | . . . . . . 7 class 1P | |
15 | 13, 14 | cop 4630 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
16 | cer 10873 | . . . . . 6 class ~R | |
17 | 15, 16 | cec 8714 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
18 | c0r 10875 | . . . . 5 class 0R | |
19 | 17, 18 | cop 4630 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
20 | 2, 3, 19 | cmpt 5225 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
21 | cpinfty 36621 | . . . . 5 class +∞ | |
22 | 3, 21 | cop 4630 | . . . 4 class 〈ω, +∞〉 |
23 | 22 | csn 4624 | . . 3 class {〈ω, +∞〉} |
24 | 20, 23 | cun 3942 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
25 | 1, 24 | wceq 1534 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Colors of variables: wff setvar class |
This definition is referenced by: bj-iomnnom 36661 |
Copyright terms: Public domain | W3C validator |