![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version |
Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 37163 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 37225 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ciomnn 37215 | . 2 class iω↪ℕ | |
2 | vn | . . . 4 setvar 𝑛 | |
3 | com 7903 | . . . 4 class ω | |
4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
5 | 4 | cv 1536 | . . . . . . . . 9 class 𝑟 |
6 | 2 | cv 1536 | . . . . . . . . . . 11 class 𝑛 |
7 | 6 | csuc 6397 | . . . . . . . . . 10 class suc 𝑛 |
8 | c1o 8515 | . . . . . . . . . 10 class 1o | |
9 | 7, 8 | cop 4654 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
10 | cltq 10927 | . . . . . . . . 9 class <Q | |
11 | 5, 9, 10 | wbr 5166 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
12 | cnq 10921 | . . . . . . . 8 class Q | |
13 | 11, 4, 12 | crab 3443 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
14 | c1p 10929 | . . . . . . 7 class 1P | |
15 | 13, 14 | cop 4654 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
16 | cer 10933 | . . . . . 6 class ~R | |
17 | 15, 16 | cec 8761 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
18 | c0r 10935 | . . . . 5 class 0R | |
19 | 17, 18 | cop 4654 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
20 | 2, 3, 19 | cmpt 5249 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
21 | cpinfty 37185 | . . . . 5 class +∞ | |
22 | 3, 21 | cop 4654 | . . . 4 class 〈ω, +∞〉 |
23 | 22 | csn 4648 | . . 3 class {〈ω, +∞〉} |
24 | 20, 23 | cun 3974 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
25 | 1, 24 | wceq 1537 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
Colors of variables: wff setvar class |
This definition is referenced by: bj-iomnnom 37225 |
Copyright terms: Public domain | W3C validator |