| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-iomnn | Structured version Visualization version GIF version | ||
| Description: Definition of the
canonical bijection from (ω ∪ {ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 37185 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 37247 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bj-iomnn | ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciomnn 37237 | . 2 class iω↪ℕ | |
| 2 | vn | . . . 4 setvar 𝑛 | |
| 3 | com 7842 | . . . 4 class ω | |
| 4 | vr | . . . . . . . . . 10 setvar 𝑟 | |
| 5 | 4 | cv 1539 | . . . . . . . . 9 class 𝑟 |
| 6 | 2 | cv 1539 | . . . . . . . . . . 11 class 𝑛 |
| 7 | 6 | csuc 6334 | . . . . . . . . . 10 class suc 𝑛 |
| 8 | c1o 8427 | . . . . . . . . . 10 class 1o | |
| 9 | 7, 8 | cop 4595 | . . . . . . . . 9 class 〈suc 𝑛, 1o〉 |
| 10 | cltq 10811 | . . . . . . . . 9 class <Q | |
| 11 | 5, 9, 10 | wbr 5107 | . . . . . . . 8 wff 𝑟 <Q 〈suc 𝑛, 1o〉 |
| 12 | cnq 10805 | . . . . . . . 8 class Q | |
| 13 | 11, 4, 12 | crab 3405 | . . . . . . 7 class {𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉} |
| 14 | c1p 10813 | . . . . . . 7 class 1P | |
| 15 | 13, 14 | cop 4595 | . . . . . 6 class 〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉 |
| 16 | cer 10817 | . . . . . 6 class ~R | |
| 17 | 15, 16 | cec 8669 | . . . . 5 class [〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R |
| 18 | c0r 10819 | . . . . 5 class 0R | |
| 19 | 17, 18 | cop 4595 | . . . 4 class 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉 |
| 20 | 2, 3, 19 | cmpt 5188 | . . 3 class (𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) |
| 21 | cpinfty 37207 | . . . . 5 class +∞ | |
| 22 | 3, 21 | cop 4595 | . . . 4 class 〈ω, +∞〉 |
| 23 | 22 | csn 4589 | . . 3 class {〈ω, +∞〉} |
| 24 | 20, 23 | cun 3912 | . 2 class ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| 25 | 1, 24 | wceq 1540 | 1 wff iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-iomnnom 37247 |
| Copyright terms: Public domain | W3C validator |