![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imafv | Structured version Visualization version GIF version |
Description: If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-imafv | ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2739 | . . . 4 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ((𝐹 “ {𝐴}) = {𝑥} ↔ (𝐺 “ {𝐴}) = {𝑥})) | |
2 | 1 | abbidv 2806 | . . 3 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}) |
3 | 2 | unieqd 4925 | . 2 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = ∪ {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}) |
4 | dffv4 6904 | . 2 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} | |
5 | dffv4 6904 | . 2 ⊢ (𝐺‘𝐴) = ∪ {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}} | |
6 | 3, 4, 5 | 3eqtr4g 2800 | 1 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2712 {csn 4631 ∪ cuni 4912 “ cima 5692 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 |
This theorem is referenced by: bj-funun 37235 |
Copyright terms: Public domain | W3C validator |