Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imafv Structured version   Visualization version   GIF version

Theorem bj-imafv 37239
Description: If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.)
Assertion
Ref Expression
bj-imafv ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-imafv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . . 4 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ((𝐹 “ {𝐴}) = {𝑥} ↔ (𝐺 “ {𝐴}) = {𝑥}))
21abbidv 2795 . . 3 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}})
32unieqd 4884 . 2 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}})
4 dffv4 6855 . 2 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
5 dffv4 6855 . 2 (𝐺𝐴) = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}
63, 4, 53eqtr4g 2789 1 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2707  {csn 4589   cuni 4871  cima 5641  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519
This theorem is referenced by:  bj-funun  37240
  Copyright terms: Public domain W3C validator