Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imafv Structured version   Visualization version   GIF version

Theorem bj-imafv 36639
Description: If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.)
Assertion
Ref Expression
bj-imafv ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-imafv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2730 . . . 4 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ((𝐹 “ {𝐴}) = {𝑥} ↔ (𝐺 “ {𝐴}) = {𝑥}))
21abbidv 2795 . . 3 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}})
32unieqd 4915 . 2 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}})
4 dffv4 6882 . 2 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
5 dffv4 6882 . 2 (𝐺𝐴) = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}
63, 4, 53eqtr4g 2791 1 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  {cab 2703  {csn 4623   cuni 4902  cima 5672  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fv 6545
This theorem is referenced by:  bj-funun  36640
  Copyright terms: Public domain W3C validator