Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imafv | Structured version Visualization version GIF version |
Description: If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-imafv | ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . . 4 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ((𝐹 “ {𝐴}) = {𝑥} ↔ (𝐺 “ {𝐴}) = {𝑥})) | |
2 | 1 | abbidv 2809 | . . 3 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}) |
3 | 2 | unieqd 4859 | . 2 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = ∪ {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}) |
4 | dffv4 6768 | . 2 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} | |
5 | dffv4 6768 | . 2 ⊢ (𝐺‘𝐴) = ∪ {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}} | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 {cab 2717 {csn 4567 ∪ cuni 4845 “ cima 5593 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-xp 5596 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fv 6440 |
This theorem is referenced by: bj-funun 35419 |
Copyright terms: Public domain | W3C validator |