Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imafv | Structured version Visualization version GIF version |
Description: If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-imafv | ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . 4 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ((𝐹 “ {𝐴}) = {𝑥} ↔ (𝐺 “ {𝐴}) = {𝑥})) | |
2 | 1 | abbidv 2807 | . . 3 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}) |
3 | 2 | unieqd 4853 | . 2 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} = ∪ {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}}) |
4 | dffv4 6771 | . 2 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} | |
5 | dffv4 6771 | . 2 ⊢ (𝐺‘𝐴) = ∪ {𝑥 ∣ (𝐺 “ {𝐴}) = {𝑥}} | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 {csn 4561 ∪ cuni 4839 “ cima 5592 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 |
This theorem is referenced by: bj-funun 35423 |
Copyright terms: Public domain | W3C validator |