Detailed syntax breakdown of Definition df-bj-mpt3
Step | Hyp | Ref
| Expression |
1 | | vx |
. . 3
setvar 𝑥 |
2 | | vy |
. . 3
setvar 𝑦 |
3 | | vz |
. . 3
setvar 𝑧 |
4 | | cA |
. . 3
class 𝐴 |
5 | | cB |
. . 3
class 𝐵 |
6 | | cC |
. . 3
class 𝐶 |
7 | | cD |
. . 3
class 𝐷 |
8 | 1, 2, 3, 4, 5, 6, 7 | cmpt3 35224 |
. 2
class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) |
9 | | vs |
. . . . . . . . 9
setvar 𝑠 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑠 |
11 | 1 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
12 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
13 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
14 | 11, 12, 13 | cotp 4567 |
. . . . . . . 8
class
〈𝑥, 𝑦, 𝑧〉 |
15 | 10, 14 | wceq 1539 |
. . . . . . 7
wff 𝑠 = 〈𝑥, 𝑦, 𝑧〉 |
16 | | vt |
. . . . . . . . 9
setvar 𝑡 |
17 | 16 | cv 1538 |
. . . . . . . 8
class 𝑡 |
18 | 17, 7 | wceq 1539 |
. . . . . . 7
wff 𝑡 = 𝐷 |
19 | 15, 18 | wa 395 |
. . . . . 6
wff (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷) |
20 | 19, 3, 6 | wrex 3063 |
. . . . 5
wff
∃𝑧 ∈
𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷) |
21 | 20, 2, 5 | wrex 3063 |
. . . 4
wff
∃𝑦 ∈
𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷) |
22 | 21, 1, 4 | wrex 3063 |
. . 3
wff
∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷) |
23 | 22, 9, 16 | copab 5133 |
. 2
class
{〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷)} |
24 | 8, 23 | wceq 1539 |
1
wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷)} |