Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfmpoa Structured version   Visualization version   GIF version

Theorem bj-dfmpoa 34437
Description: An equivalent definition of df-mpo 7158. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-dfmpoa (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Distinct variable groups:   𝑥,𝑦,𝑠,𝑡   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐶,𝑠,𝑡   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem bj-dfmpoa
StepHypRef Expression
1 df-mpo 7158 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)}
2 dfoprab2 7209 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))}
3 ancom 463 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶) ↔ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
43anbi2i 624 . . . . . . . 8 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
5 anass 471 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
6 an13 645 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
74, 5, 63bitr2i 301 . . . . . . 7 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
87exbii 1847 . . . . . 6 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
9 df-rex 3143 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
10 r19.42v 3349 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
118, 9, 103bitr2i 301 . . . . 5 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1211exbii 1847 . . . 4 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
13 df-rex 3143 . . . 4 (∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1412, 13bitr4i 280 . . 3 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
1514opabbii 5130 . 2 {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
161, 2, 153eqtri 2847 1 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1536  wex 1779  wcel 2113  wrex 3138  cop 4570  {copab 5125  {coprab 7154  cmpo 7155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pr 5327
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-rex 3143  df-rab 3146  df-v 3495  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-opab 5126  df-oprab 7157  df-mpo 7158
This theorem is referenced by:  bj-mpomptALT  34438
  Copyright terms: Public domain W3C validator