Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfmpoa Structured version   Visualization version   GIF version

Theorem bj-dfmpoa 36506
Description: An equivalent definition of df-mpo 7410. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-dfmpoa (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Distinct variable groups:   𝑥,𝑦,𝑠,𝑡   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐶,𝑠,𝑡   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem bj-dfmpoa
StepHypRef Expression
1 df-mpo 7410 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)}
2 dfoprab2 7463 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))}
3 ancom 460 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶) ↔ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
43anbi2i 622 . . . . . . . 8 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
5 anass 468 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
6 an13 644 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
74, 5, 63bitr2i 299 . . . . . . 7 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
87exbii 1842 . . . . . 6 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
9 df-rex 3065 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
10 r19.42v 3184 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
118, 9, 103bitr2i 299 . . . . 5 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1211exbii 1842 . . . 4 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
13 df-rex 3065 . . . 4 (∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1412, 13bitr4i 278 . . 3 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
1514opabbii 5208 . 2 {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
161, 2, 153eqtri 2758 1 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wex 1773  wcel 2098  wrex 3064  cop 4629  {copab 5203  {coprab 7406  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-opab 5204  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  bj-mpomptALT  36507
  Copyright terms: Public domain W3C validator