Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfmpoa Structured version   Visualization version   GIF version

Theorem bj-dfmpoa 35987
Description: An equivalent definition of df-mpo 7410. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-dfmpoa (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Distinct variable groups:   𝑥,𝑦,𝑠,𝑡   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐶,𝑠,𝑡   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem bj-dfmpoa
StepHypRef Expression
1 df-mpo 7410 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)}
2 dfoprab2 7463 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))}
3 ancom 461 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶) ↔ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
43anbi2i 623 . . . . . . . 8 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
5 anass 469 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
6 an13 645 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
74, 5, 63bitr2i 298 . . . . . . 7 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
87exbii 1850 . . . . . 6 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
9 df-rex 3071 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
10 r19.42v 3190 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
118, 9, 103bitr2i 298 . . . . 5 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1211exbii 1850 . . . 4 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
13 df-rex 3071 . . . 4 (∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1412, 13bitr4i 277 . . 3 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
1514opabbii 5214 . 2 {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
161, 2, 153eqtri 2764 1 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wex 1781  wcel 2106  wrex 3070  cop 4633  {copab 5209  {coprab 7406  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  bj-mpomptALT  35988
  Copyright terms: Public domain W3C validator