Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfmpoa Structured version   Visualization version   GIF version

Theorem bj-dfmpoa 35216
Description: An equivalent definition of df-mpo 7260. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-dfmpoa (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Distinct variable groups:   𝑥,𝑦,𝑠,𝑡   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐶,𝑠,𝑡   𝑦,𝐴
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem bj-dfmpoa
StepHypRef Expression
1 df-mpo 7260 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)}
2 dfoprab2 7311 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑡⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))}
3 ancom 460 . . . . . . . . 9 (((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶) ↔ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
43anbi2i 622 . . . . . . . 8 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
5 anass 468 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ (𝑡 = 𝐶 ∧ (𝑥𝐴𝑦𝐵))))
6 an13 643 . . . . . . . 8 (((𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ∧ (𝑥𝐴𝑦𝐵)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
74, 5, 63bitr2i 298 . . . . . . 7 ((𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
87exbii 1851 . . . . . 6 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
9 df-rex 3069 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))))
10 r19.42v 3276 . . . . . 6 (∃𝑦𝐵 (𝑥𝐴 ∧ (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
118, 9, 103bitr2i 298 . . . . 5 (∃𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1211exbii 1851 . . . 4 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
13 df-rex 3069 . . . 4 (∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)))
1412, 13bitr4i 277 . . 3 (∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶)) ↔ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
1514opabbii 5137 . 2 {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝑦(𝑠 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑡 = 𝐶))} = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
161, 2, 153eqtri 2770 1 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑠 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cop 4564  {copab 5132  {coprab 7256  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  bj-mpomptALT  35217
  Copyright terms: Public domain W3C validator