Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cmpt 5158 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 1 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 2 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1538 | . . . . 5 class 𝑦 |
9 | 8, 3 | wceq 1539 | . . . 4 wff 𝑦 = 𝐵 |
10 | 6, 9 | wa 396 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
11 | 10, 1, 7 | copab 5137 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
12 | 4, 11 | wceq 1539 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpteq12da 5160 mpteq12dfOLD 5162 mpteq12f 5163 mpteq12dva 5164 nfmpt 5182 nfmpt1 5183 cbvmptf 5184 cbvmptfg 5185 cbvmptv 5188 mptv 5191 csbmpt12 5471 dfid4 5491 fconstmpt 5650 mptrel 5737 rnmpt 5867 resmpt 5948 mptresid 5961 mptresidOLD 5963 mptcnv 6048 mptpreima 6146 funmpt 6479 dfmpt3 6576 mptfnf 6577 mptfng 6581 mptun 6588 dffn5 6837 feqmptdf 6848 fvmptg 6882 fvmptndm 6914 fndmin 6931 f1ompt 6994 fmptco 7010 fmptsng 7049 fmptsnd 7050 mpomptx 7396 f1ocnvd 7529 dftpos4 8070 mpocurryd 8094 mapsncnv 8690 marypha2lem3 9205 cardf2 9710 aceq3lem 9885 compsscnv 10136 pjfval2 20925 2ndcdisj 22616 xkocnv 22974 abrexexd 30863 f1o3d 30971 fmptcof2 31003 mptssALT 31021 mpomptxf 31025 f1od2 31065 qqhval2 31941 dfbigcup2 34210 bj-0nelmpt 35296 bj-mpomptALT 35299 rnmptsn 35515 curf 35764 curunc 35768 phpreu 35770 poimirlem26 35812 mbfposadd 35833 fnopabco 35890 mptbi12f 36333 fgraphopab 41042 mptssid 42792 dfafn5a 44663 mpomptx2 45681 |
Copyright terms: Public domain | W3C validator |