![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cmpt 5002 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 1 | cv 1506 | . . . . 5 class 𝑥 |
6 | 5, 2 | wcel 2048 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1506 | . . . . 5 class 𝑦 |
9 | 8, 3 | wceq 1507 | . . . 4 wff 𝑦 = 𝐵 |
10 | 6, 9 | wa 387 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
11 | 10, 1, 7 | copab 4985 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
12 | 4, 11 | wceq 1507 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpteq12f 5004 mpteq12df 5007 nfmpt 5018 nfmpt1 5019 cbvmptf 5020 cbvmpt 5021 mptv 5023 csbmpt12 5289 dfid4 5307 fconstmpt 5457 mptrel 5540 rnmpt 5663 resmpt 5744 mptresid 5756 mptcnv 5832 mptpreima 5925 funmpt 6220 dfmpt3 6306 mptfnf 6307 mptfng 6311 mptun 6318 dffn5 6548 feqmptdf 6558 fvmptg 6587 fvmptndm 6617 fndmin 6634 f1ompt 6692 fmptco 6708 fmptsng 6747 fmptsnd 6748 mpomptx 7075 f1ocnvd 7208 dftpos4 7707 mpocurryd 7731 mapsncnv 8247 marypha2lem3 8688 cardf2 9158 aceq3lem 9332 compsscnv 9583 pjfval2 20545 2ndcdisj 21758 xkocnv 22116 abrexexd 30038 f1o3d 30126 fmptcof2 30154 mptssALT 30172 mpomptxf 30175 f1od2 30198 qqhval2 30824 dfbigcup2 32821 bj-0nelmpt 33852 bj-mpomptALT 33855 rnmptsn 33993 curf 34259 curunc 34263 phpreu 34265 poimirlem26 34307 mbfposadd 34328 fnopabco 34388 mptbi12f 34836 fgraphopab 39151 mptssid 40884 dfafn5a 42711 mpt2mptx2 43687 |
Copyright terms: Public domain | W3C validator |