| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 5191 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1540 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 5172 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpteq12da 5193 mpteq12f 5195 mpteq12dva 5196 nfmpt 5208 nfmpt1 5209 cbvmptf 5210 cbvmptfg 5211 cbvmptv 5214 mptv 5216 csbmpt12 5520 dfid4 5537 fconstmpt 5703 mptrel 5791 rnmpt 5924 resmpt 6011 mptresid 6025 mptcnv 6115 mptpreima 6214 funmpt 6557 dfmpt3 6655 mptfnf 6656 mptfng 6660 mptun 6667 dffn5 6922 feqmptdf 6934 fvmptg 6969 fvmptndm 7002 fndmin 7020 f1ompt 7086 fmptco 7104 fmptsng 7145 fmptsnd 7146 mpomptx 7505 f1ocnvd 7643 dftpos4 8227 mpocurryd 8251 mapsncnv 8869 marypha2lem3 9395 cardf2 9903 aceq3lem 10080 compsscnv 10331 pjfval2 21625 2ndcdisj 23350 xkocnv 23708 dvcnp2 25828 dvmulbr 25848 dvcobr 25856 cmvth 25902 dvfsumle 25933 dvfsumlem2 25940 taylthlem2 26289 abrexexd 32445 f1o3d 32558 fmptcof2 32588 mptssALT 32606 mpomptxf 32608 f1od2 32651 qqhval2 33979 dfbigcup2 35894 cbvmptvw2 36229 cbvmptdavw 36262 cbvmptdavw2 36283 bj-0nelmpt 37111 bj-mpomptALT 37114 rnmptsn 37330 curf 37599 curunc 37603 phpreu 37605 poimirlem26 37647 mbfposadd 37668 fnopabco 37724 mptbi12f 38167 fgraphopab 43199 mptssid 45242 lambert0 46895 lamberte 46896 dfafn5a 47165 mpomptx2 48327 |
| Copyright terms: Public domain | W3C validator |