| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 5188 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1540 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 5169 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpteq12da 5190 mpteq12f 5192 mpteq12dva 5193 nfmpt 5205 nfmpt1 5206 cbvmptf 5207 cbvmptfg 5208 cbvmptv 5211 mptv 5213 csbmpt12 5517 dfid4 5534 fconstmpt 5700 mptrel 5788 rnmpt 5921 resmpt 6008 mptresid 6022 mptcnv 6112 mptpreima 6211 funmpt 6554 dfmpt3 6652 mptfnf 6653 mptfng 6657 mptun 6664 dffn5 6919 feqmptdf 6931 fvmptg 6966 fvmptndm 6999 fndmin 7017 f1ompt 7083 fmptco 7101 fmptsng 7142 fmptsnd 7143 mpomptx 7502 f1ocnvd 7640 dftpos4 8224 mpocurryd 8248 mapsncnv 8866 marypha2lem3 9388 cardf2 9896 aceq3lem 10073 compsscnv 10324 pjfval2 21618 2ndcdisj 23343 xkocnv 23701 dvcnp2 25821 dvmulbr 25841 dvcobr 25849 cmvth 25895 dvfsumle 25926 dvfsumlem2 25933 taylthlem2 26282 abrexexd 32438 f1o3d 32551 fmptcof2 32581 mptssALT 32599 mpomptxf 32601 f1od2 32644 qqhval2 33972 dfbigcup2 35887 cbvmptvw2 36222 cbvmptdavw 36255 cbvmptdavw2 36276 bj-0nelmpt 37104 bj-mpomptALT 37107 rnmptsn 37323 curf 37592 curunc 37596 phpreu 37598 poimirlem26 37640 mbfposadd 37661 fnopabco 37717 mptbi12f 38160 fgraphopab 43192 mptssid 45235 lambert0 46888 lamberte 46889 sinnpoly 46892 dfafn5a 47161 mpomptx2 48323 |
| Copyright terms: Public domain | W3C validator |