| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 5201 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1540 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 5181 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpteq12da 5203 mpteq12f 5205 mpteq12dva 5206 nfmpt 5219 nfmpt1 5220 cbvmptf 5221 cbvmptfg 5222 cbvmptv 5225 mptv 5228 csbmpt12 5532 dfid4 5549 fconstmpt 5716 mptrel 5804 rnmpt 5937 resmpt 6024 mptresid 6038 mptcnv 6128 mptpreima 6227 funmpt 6573 dfmpt3 6671 mptfnf 6672 mptfng 6676 mptun 6683 dffn5 6936 feqmptdf 6948 fvmptg 6983 fvmptndm 7016 fndmin 7034 f1ompt 7100 fmptco 7118 fmptsng 7159 fmptsnd 7160 mpomptx 7518 f1ocnvd 7656 dftpos4 8242 mpocurryd 8266 mapsncnv 8905 marypha2lem3 9447 cardf2 9955 aceq3lem 10132 compsscnv 10383 pjfval2 21667 2ndcdisj 23392 xkocnv 23750 dvcnp2 25871 dvmulbr 25891 dvcobr 25899 cmvth 25945 dvfsumle 25976 dvfsumlem2 25983 taylthlem2 26332 abrexexd 32436 f1o3d 32551 fmptcof2 32581 mptssALT 32599 mpomptxf 32601 f1od2 32644 qqhval2 33959 dfbigcup2 35863 cbvmptvw2 36198 cbvmptdavw 36231 cbvmptdavw2 36252 bj-0nelmpt 37080 bj-mpomptALT 37083 rnmptsn 37299 curf 37568 curunc 37572 phpreu 37574 poimirlem26 37616 mbfposadd 37637 fnopabco 37693 mptbi12f 38136 fgraphopab 43174 mptssid 45213 lambert0 46867 lamberte 46868 dfafn5a 47137 mpomptx2 48258 |
| Copyright terms: Public domain | W3C validator |