| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 5172 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1540 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1541 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 5153 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1541 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpteq12da 5174 mpteq12f 5176 mpteq12dva 5177 nfmpt 5189 nfmpt1 5190 cbvmptf 5191 cbvmptfg 5192 cbvmptv 5195 mptv 5197 csbmpt12 5497 dfid4 5512 fconstmpt 5678 mptrel 5765 rnmpt 5897 resmpt 5986 mptresid 6000 mptcnv 6086 mptpreima 6185 funmpt 6519 dfmpt3 6615 mptfnf 6616 mptfng 6620 mptun 6627 dffn5 6880 feqmptdf 6892 fvmptg 6927 fvmptndm 6960 fndmin 6978 f1ompt 7044 fmptco 7062 fmptsng 7102 fmptsnd 7103 mpomptx 7459 f1ocnvd 7597 dftpos4 8175 mpocurryd 8199 mapsncnv 8817 marypha2lem3 9321 cardf2 9833 aceq3lem 10008 compsscnv 10259 pjfval2 21644 2ndcdisj 23369 xkocnv 23727 dvcnp2 25846 dvmulbr 25866 dvcobr 25874 cmvth 25920 dvfsumle 25951 dvfsumlem2 25958 taylthlem2 26307 abrexexd 32484 f1o3d 32603 fmptcof2 32634 mptssALT 32652 mpomptxf 32654 f1od2 32697 qqhval2 33990 dfbigcup2 35932 cbvmptvw2 36267 cbvmptdavw 36300 cbvmptdavw2 36321 bj-0nelmpt 37149 bj-mpomptALT 37152 rnmptsn 37368 curf 37637 curunc 37641 phpreu 37643 poimirlem26 37685 mbfposadd 37706 fnopabco 37762 mptbi12f 38205 fgraphopab 43235 mptssid 45277 lambert0 46917 lamberte 46918 sinnpoly 46921 dfafn5a 47190 mpomptx2 48365 |
| Copyright terms: Public domain | W3C validator |