| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 5176 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1540 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 5157 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpteq12da 5178 mpteq12f 5180 mpteq12dva 5181 nfmpt 5193 nfmpt1 5194 cbvmptf 5195 cbvmptfg 5196 cbvmptv 5199 mptv 5201 csbmpt12 5504 dfid4 5519 fconstmpt 5685 mptrel 5772 rnmpt 5903 resmpt 5992 mptresid 6006 mptcnv 6092 mptpreima 6191 funmpt 6524 dfmpt3 6620 mptfnf 6621 mptfng 6625 mptun 6632 dffn5 6885 feqmptdf 6897 fvmptg 6932 fvmptndm 6965 fndmin 6983 f1ompt 7049 fmptco 7067 fmptsng 7108 fmptsnd 7109 mpomptx 7466 f1ocnvd 7604 dftpos4 8185 mpocurryd 8209 mapsncnv 8827 marypha2lem3 9346 cardf2 9858 aceq3lem 10033 compsscnv 10284 pjfval2 21634 2ndcdisj 23359 xkocnv 23717 dvcnp2 25837 dvmulbr 25857 dvcobr 25865 cmvth 25911 dvfsumle 25942 dvfsumlem2 25949 taylthlem2 26298 abrexexd 32471 f1o3d 32584 fmptcof2 32614 mptssALT 32632 mpomptxf 32634 f1od2 32677 qqhval2 33948 dfbigcup2 35872 cbvmptvw2 36207 cbvmptdavw 36240 cbvmptdavw2 36261 bj-0nelmpt 37089 bj-mpomptALT 37092 rnmptsn 37308 curf 37577 curunc 37581 phpreu 37583 poimirlem26 37625 mbfposadd 37646 fnopabco 37702 mptbi12f 38145 fgraphopab 43176 mptssid 45219 lambert0 46872 lamberte 46873 sinnpoly 46876 dfafn5a 47145 mpomptx2 48320 |
| Copyright terms: Public domain | W3C validator |