![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5042 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7018 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1521 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2081 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1521 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2081 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 396 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1521 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1522 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 396 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7017 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1522 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7084 mpoeq123dva 7086 mpoeq3dva 7089 nfmpo1 7092 nfmpo2 7093 nfmpo 7094 mpo0 7095 cbvmpox 7103 mpov 7120 mpomptx 7121 resmpo 7128 mpofun 7132 mpo2eqb 7139 rnmpo 7140 reldmmpo 7141 elrnmpores 7144 ovmpt4g 7153 mpondm0 7245 elmpocl 7246 fmpox 7621 bropopvvv 7641 bropfvvvv 7643 tposmpo 7780 erovlem 8243 xpcomco 8454 omxpenlem 8465 cpnnen 15415 mpomptxf 30115 df1stres 30127 df2ndres 30128 f1od2 30145 sxbrsigalem5 31163 dmscut 32881 bj-dfmpoa 34008 csbmpo123 34143 uncf 34402 unccur 34406 mpobi123f 34972 cbvmpo2 40902 cbvmpo1 40903 mpomptx2 43861 cbvmpox2 43862 |
Copyright terms: Public domain | W3C validator |