| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5177 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 7357 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1540 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2113 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1540 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2113 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1540 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1541 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 7356 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1541 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpoeq123 7427 mpoeq123dva 7429 mpoeq3dva 7432 nfmpo1 7435 nfmpo2 7436 nfmpo 7437 0mpo0 7438 mpo0 7440 cbvmpox 7448 cbvmpov 7450 mpov 7467 mpomptx 7468 resmpo 7475 mpofun 7479 mpo2eqb 7487 rnmpo 7488 reldmmpo 7489 elrnmpores 7493 ovmpt4g 7502 mpondm0 7595 elmpocl 7596 fmpox 8008 bropopvvv 8029 bropfvvvv 8031 tposmpo 8202 erovlem 8746 xpcomco 8990 omxpenlem 9001 mpoaddf 11110 mpomulf 11111 cpnnen 16148 dmscut 27762 mpomptxf 32670 df1stres 32696 df2ndres 32697 f1od2 32713 sxbrsigalem5 34312 cbvmpovw2 36297 cbvmpo1vw2 36298 cbvmpo2vw2 36299 cbvmpodavw2 36346 cbvmpo1davw2 36347 cbvmpo2davw2 36348 bj-dfmpoa 37173 csbmpo123 37386 uncf 37649 unccur 37653 mpobi123f 38212 cbvmpo2 45208 cbvmpo1 45209 mpomptx2 48449 cbvmpox2 48450 sectpropdlem 49151 invpropdlem 49153 isopropdlem 49155 |
| Copyright terms: Public domain | W3C validator |