| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5192 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 7392 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2109 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1539 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1540 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 7391 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpoeq123 7464 mpoeq123dva 7466 mpoeq3dva 7469 nfmpo1 7472 nfmpo2 7473 nfmpo 7474 0mpo0 7475 mpo0 7477 cbvmpox 7485 cbvmpov 7487 mpov 7504 mpomptx 7505 resmpo 7512 mpofun 7516 mpo2eqb 7524 rnmpo 7525 reldmmpo 7526 elrnmpores 7530 ovmpt4g 7539 mpondm0 7632 elmpocl 7633 fmpox 8049 bropopvvv 8072 bropfvvvv 8074 tposmpo 8245 erovlem 8789 xpcomco 9036 omxpenlem 9047 mpoaddf 11169 mpomulf 11170 cpnnen 16204 dmscut 27730 mpomptxf 32608 df1stres 32634 df2ndres 32635 f1od2 32651 sxbrsigalem5 34286 cbvmpovw2 36237 cbvmpo1vw2 36238 cbvmpo2vw2 36239 cbvmpodavw2 36286 cbvmpo1davw2 36287 cbvmpo2davw2 36288 bj-dfmpoa 37113 csbmpo123 37326 uncf 37600 unccur 37604 mpobi123f 38163 cbvmpo2 45098 cbvmpo1 45099 mpomptx2 48327 cbvmpox2 48328 sectpropdlem 49029 invpropdlem 49031 isopropdlem 49033 |
| Copyright terms: Public domain | W3C validator |