![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5233 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7411 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1541 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2107 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1541 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2107 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 397 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1541 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1542 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 397 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7410 | . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1542 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7481 mpoeq123dva 7483 mpoeq3dva 7486 nfmpo1 7489 nfmpo2 7490 nfmpo 7491 0mpo0 7492 mpo0 7494 cbvmpox 7502 mpov 7520 mpomptx 7521 resmpo 7528 mpofun 7532 mpofunOLD 7533 mpo2eqb 7541 rnmpo 7542 reldmmpo 7543 elrnmpores 7546 ovmpt4g 7555 mpondm0 7647 elmpocl 7648 fmpox 8053 bropopvvv 8076 bropfvvvv 8078 tposmpo 8248 erovlem 8807 xpcomco 9062 omxpenlem 9073 cpnnen 16172 dmscut 27313 mpomptxf 31936 df1stres 31956 df2ndres 31957 f1od2 31977 sxbrsigalem5 33318 mpomulf 35190 mpoaddf 35216 bj-dfmpoa 36047 csbmpo123 36260 uncf 36515 unccur 36519 mpobi123f 37078 cbvmpo2 43834 cbvmpo1 43835 mpomptx2 47058 cbvmpox2 47059 |
Copyright terms: Public domain | W3C validator |