| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5177 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 7355 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2109 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1539 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1540 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 7354 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpoeq123 7425 mpoeq123dva 7427 mpoeq3dva 7430 nfmpo1 7433 nfmpo2 7434 nfmpo 7435 0mpo0 7436 mpo0 7438 cbvmpox 7446 cbvmpov 7448 mpov 7465 mpomptx 7466 resmpo 7473 mpofun 7477 mpo2eqb 7485 rnmpo 7486 reldmmpo 7487 elrnmpores 7491 ovmpt4g 7500 mpondm0 7593 elmpocl 7594 fmpox 8009 bropopvvv 8030 bropfvvvv 8032 tposmpo 8203 erovlem 8747 xpcomco 8991 omxpenlem 9002 mpoaddf 11122 mpomulf 11123 cpnnen 16156 dmscut 27740 mpomptxf 32634 df1stres 32660 df2ndres 32661 f1od2 32677 sxbrsigalem5 34255 cbvmpovw2 36215 cbvmpo1vw2 36216 cbvmpo2vw2 36217 cbvmpodavw2 36264 cbvmpo1davw2 36265 cbvmpo2davw2 36266 bj-dfmpoa 37091 csbmpo123 37304 uncf 37578 unccur 37582 mpobi123f 38141 cbvmpo2 45075 cbvmpo1 45076 mpomptx2 48307 cbvmpox2 48308 sectpropdlem 49009 invpropdlem 49011 isopropdlem 49013 |
| Copyright terms: Public domain | W3C validator |