Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5158 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7277 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1538 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2106 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1538 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2106 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 396 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1538 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1539 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 396 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7276 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1539 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7347 mpoeq123dva 7349 mpoeq3dva 7352 nfmpo1 7355 nfmpo2 7356 nfmpo 7357 0mpo0 7358 mpo0 7360 cbvmpox 7368 mpov 7386 mpomptx 7387 resmpo 7394 mpofun 7398 mpofunOLD 7399 mpo2eqb 7406 rnmpo 7407 reldmmpo 7408 elrnmpores 7411 ovmpt4g 7420 mpondm0 7510 elmpocl 7511 fmpox 7907 bropopvvv 7930 bropfvvvv 7932 tposmpo 8079 erovlem 8602 xpcomco 8849 omxpenlem 8860 cpnnen 15938 mpomptxf 31016 df1stres 31036 df2ndres 31037 f1od2 31056 sxbrsigalem5 32255 dmscut 34005 bj-dfmpoa 35289 csbmpo123 35502 uncf 35756 unccur 35760 mpobi123f 36320 cbvmpo2 42647 cbvmpo1 42648 mpomptx2 45670 cbvmpox2 45671 |
Copyright terms: Public domain | W3C validator |