![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5231 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7432 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1535 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2105 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1535 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2105 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1535 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1536 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7431 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1536 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7504 mpoeq123dva 7506 mpoeq3dva 7509 nfmpo1 7512 nfmpo2 7513 nfmpo 7514 0mpo0 7515 mpo0 7517 cbvmpox 7525 cbvmpov 7527 mpov 7544 mpomptx 7545 resmpo 7552 mpofun 7556 mpo2eqb 7564 rnmpo 7565 reldmmpo 7566 elrnmpores 7570 ovmpt4g 7579 mpondm0 7672 elmpocl 7673 fmpox 8090 bropopvvv 8113 bropfvvvv 8115 tposmpo 8286 erovlem 8851 xpcomco 9100 omxpenlem 9111 mpoaddf 11246 mpomulf 11247 cpnnen 16261 dmscut 27870 mpomptxf 32693 df1stres 32718 df2ndres 32719 f1od2 32738 sxbrsigalem5 34269 cbvmpovw2 36224 cbvmpo1vw2 36225 cbvmpo2vw2 36226 cbvmpodavw2 36273 cbvmpo1davw2 36274 cbvmpo2davw2 36275 bj-dfmpoa 37100 csbmpo123 37313 uncf 37585 unccur 37589 mpobi123f 38148 cbvmpo2 45036 cbvmpo1 45037 mpomptx2 48179 cbvmpox2 48180 |
Copyright terms: Public domain | W3C validator |