| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5171 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 7343 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1540 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2110 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1540 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2110 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1540 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1541 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 7342 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1541 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpoeq123 7413 mpoeq123dva 7415 mpoeq3dva 7418 nfmpo1 7421 nfmpo2 7422 nfmpo 7423 0mpo0 7424 mpo0 7426 cbvmpox 7434 cbvmpov 7436 mpov 7453 mpomptx 7454 resmpo 7461 mpofun 7465 mpo2eqb 7473 rnmpo 7474 reldmmpo 7475 elrnmpores 7479 ovmpt4g 7488 mpondm0 7581 elmpocl 7582 fmpox 7994 bropopvvv 8015 bropfvvvv 8017 tposmpo 8188 erovlem 8732 xpcomco 8975 omxpenlem 8986 mpoaddf 11092 mpomulf 11093 cpnnen 16130 dmscut 27745 mpomptxf 32649 df1stres 32675 df2ndres 32676 f1od2 32692 sxbrsigalem5 34291 cbvmpovw2 36255 cbvmpo1vw2 36256 cbvmpo2vw2 36257 cbvmpodavw2 36304 cbvmpo1davw2 36305 cbvmpo2davw2 36306 bj-dfmpoa 37131 csbmpo123 37344 uncf 37618 unccur 37622 mpobi123f 38181 cbvmpo2 45113 cbvmpo1 45114 mpomptx2 48345 cbvmpox2 48346 sectpropdlem 49047 invpropdlem 49049 isopropdlem 49051 |
| Copyright terms: Public domain | W3C validator |