![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5250 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7450 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1536 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2108 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1536 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2108 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1536 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1537 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7449 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1537 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7522 mpoeq123dva 7524 mpoeq3dva 7527 nfmpo1 7530 nfmpo2 7531 nfmpo 7532 0mpo0 7533 mpo0 7535 cbvmpox 7543 cbvmpov 7545 mpov 7562 mpomptx 7563 resmpo 7570 mpofun 7574 mpo2eqb 7582 rnmpo 7583 reldmmpo 7584 elrnmpores 7588 ovmpt4g 7597 mpondm0 7690 elmpocl 7691 fmpox 8108 bropopvvv 8131 bropfvvvv 8133 tposmpo 8304 erovlem 8871 xpcomco 9128 omxpenlem 9139 mpoaddf 11278 mpomulf 11279 cpnnen 16277 dmscut 27874 mpomptxf 32695 df1stres 32715 df2ndres 32716 f1od2 32735 sxbrsigalem5 34253 cbvmpovw2 36208 cbvmpo1vw2 36209 cbvmpo2vw2 36210 cbvmpodavw2 36257 cbvmpo1davw2 36258 cbvmpo2davw2 36259 bj-dfmpoa 37084 csbmpo123 37297 uncf 37559 unccur 37563 mpobi123f 38122 cbvmpo2 44999 cbvmpo1 45000 mpomptx2 48059 cbvmpox2 48060 |
Copyright terms: Public domain | W3C validator |