Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5153 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7254 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1542 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2112 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1542 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2112 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 399 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1542 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1543 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 399 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7253 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1543 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7322 mpoeq123dva 7324 mpoeq3dva 7327 nfmpo1 7330 nfmpo2 7331 nfmpo 7332 0mpo0 7333 mpo0 7335 cbvmpox 7343 mpov 7361 mpomptx 7362 resmpo 7369 mpofun 7373 mpofunOLD 7374 mpo2eqb 7381 rnmpo 7382 reldmmpo 7383 elrnmpores 7386 ovmpt4g 7395 mpondm0 7485 elmpocl 7486 fmpox 7877 bropopvvv 7898 bropfvvvv 7900 tposmpo 8047 erovlem 8537 xpcomco 8779 omxpenlem 8790 cpnnen 15841 mpomptxf 30893 df1stres 30913 df2ndres 30914 f1od2 30933 sxbrsigalem5 32130 dmscut 33907 bj-dfmpoa 35192 csbmpo123 35408 uncf 35662 unccur 35666 mpobi123f 36226 cbvmpo2 42509 cbvmpo1 42510 mpomptx2 45531 cbvmpox2 45532 |
Copyright terms: Public domain | W3C validator |