| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5202 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 7405 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2108 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2108 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1539 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1540 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 7404 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpoeq123 7477 mpoeq123dva 7479 mpoeq3dva 7482 nfmpo1 7485 nfmpo2 7486 nfmpo 7487 0mpo0 7488 mpo0 7490 cbvmpox 7498 cbvmpov 7500 mpov 7517 mpomptx 7518 resmpo 7525 mpofun 7529 mpo2eqb 7537 rnmpo 7538 reldmmpo 7539 elrnmpores 7543 ovmpt4g 7552 mpondm0 7645 elmpocl 7646 fmpox 8064 bropopvvv 8087 bropfvvvv 8089 tposmpo 8260 erovlem 8825 xpcomco 9074 omxpenlem 9085 mpoaddf 11221 mpomulf 11222 cpnnen 16245 dmscut 27773 mpomptxf 32601 df1stres 32627 df2ndres 32628 f1od2 32644 sxbrsigalem5 34266 cbvmpovw2 36206 cbvmpo1vw2 36207 cbvmpo2vw2 36208 cbvmpodavw2 36255 cbvmpo1davw2 36256 cbvmpo2davw2 36257 bj-dfmpoa 37082 csbmpo123 37295 uncf 37569 unccur 37573 mpobi123f 38132 cbvmpo2 45069 cbvmpo1 45070 mpomptx2 48258 cbvmpox2 48259 sectpropdlem 48951 invpropdlem 48953 isopropdlem 48955 |
| Copyright terms: Public domain | W3C validator |