Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5117 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpo 7158 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1537 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 2111 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1537 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 2111 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 399 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1537 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1538 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 399 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 7157 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1538 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpoeq123 7226 mpoeq123dva 7228 mpoeq3dva 7231 nfmpo1 7234 nfmpo2 7235 nfmpo 7236 0mpo0 7237 mpo0 7239 cbvmpox 7247 mpov 7264 mpomptx 7265 resmpo 7272 mpofun 7276 mpofunOLD 7277 mpo2eqb 7284 rnmpo 7285 reldmmpo 7286 elrnmpores 7289 ovmpt4g 7298 mpondm0 7388 elmpocl 7389 fmpox 7775 bropopvvv 7796 bropfvvvv 7798 tposmpo 7945 erovlem 8409 xpcomco 8641 omxpenlem 8652 cpnnen 15643 mpomptxf 30552 df1stres 30572 df2ndres 30573 f1od2 30592 sxbrsigalem5 31786 dmscut 33600 bj-dfmpoa 34847 csbmpo123 35062 uncf 35350 unccur 35354 mpobi123f 35914 cbvmpo2 42141 cbvmpo1 42142 mpomptx2 45152 cbvmpox2 45153 |
Copyright terms: Public domain | W3C validator |