| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mpo | Structured version Visualization version GIF version | ||
| Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5189 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | vy | . . 3 setvar 𝑦 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | cB | . . 3 class 𝐵 | |
| 5 | cC | . . 3 class 𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cmpo 7389 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 7 | 1 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 3 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑦 |
| 10 | 9, 4 | wcel 2109 | . . . . 5 wff 𝑦 ∈ 𝐵 |
| 11 | 8, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 12 | vz | . . . . . 6 setvar 𝑧 | |
| 13 | 12 | cv 1539 | . . . . 5 class 𝑧 |
| 14 | 13, 5 | wceq 1540 | . . . 4 wff 𝑧 = 𝐶 |
| 15 | 11, 14 | wa 395 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
| 16 | 15, 1, 2, 12 | coprab 7388 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 17 | 6, 16 | wceq 1540 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: mpoeq123 7461 mpoeq123dva 7463 mpoeq3dva 7466 nfmpo1 7469 nfmpo2 7470 nfmpo 7471 0mpo0 7472 mpo0 7474 cbvmpox 7482 cbvmpov 7484 mpov 7501 mpomptx 7502 resmpo 7509 mpofun 7513 mpo2eqb 7521 rnmpo 7522 reldmmpo 7523 elrnmpores 7527 ovmpt4g 7536 mpondm0 7629 elmpocl 7630 fmpox 8046 bropopvvv 8069 bropfvvvv 8071 tposmpo 8242 erovlem 8786 xpcomco 9031 omxpenlem 9042 mpoaddf 11162 mpomulf 11163 cpnnen 16197 dmscut 27723 mpomptxf 32601 df1stres 32627 df2ndres 32628 f1od2 32644 sxbrsigalem5 34279 cbvmpovw2 36230 cbvmpo1vw2 36231 cbvmpo2vw2 36232 cbvmpodavw2 36279 cbvmpo1davw2 36280 cbvmpo2davw2 36281 bj-dfmpoa 37106 csbmpo123 37319 uncf 37593 unccur 37597 mpobi123f 38156 cbvmpo2 45091 cbvmpo1 45092 mpomptx2 48323 cbvmpox2 48324 sectpropdlem 49025 invpropdlem 49027 isopropdlem 49029 |
| Copyright terms: Public domain | W3C validator |