MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mpo Structured version   Visualization version   GIF version

Definition df-mpo 7392
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5189 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
3 cA . . 3 class 𝐴
4 cB . . 3 class 𝐵
5 cC . . 3 class 𝐶
61, 2, 3, 4, 5cmpo 7389 . 2 class (𝑥𝐴, 𝑦𝐵𝐶)
71cv 1539 . . . . . 6 class 𝑥
87, 3wcel 2109 . . . . 5 wff 𝑥𝐴
92cv 1539 . . . . . 6 class 𝑦
109, 4wcel 2109 . . . . 5 wff 𝑦𝐵
118, 10wa 395 . . . 4 wff (𝑥𝐴𝑦𝐵)
12 vz . . . . . 6 setvar 𝑧
1312cv 1539 . . . . 5 class 𝑧
1413, 5wceq 1540 . . . 4 wff 𝑧 = 𝐶
1511, 14wa 395 . . 3 wff ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
1615, 1, 2, 12coprab 7388 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
176, 16wceq 1540 1 wff (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Colors of variables: wff setvar class
This definition is referenced by:  mpoeq123  7461  mpoeq123dva  7463  mpoeq3dva  7466  nfmpo1  7469  nfmpo2  7470  nfmpo  7471  0mpo0  7472  mpo0  7474  cbvmpox  7482  cbvmpov  7484  mpov  7501  mpomptx  7502  resmpo  7509  mpofun  7513  mpo2eqb  7521  rnmpo  7522  reldmmpo  7523  elrnmpores  7527  ovmpt4g  7536  mpondm0  7629  elmpocl  7630  fmpox  8046  bropopvvv  8069  bropfvvvv  8071  tposmpo  8242  erovlem  8786  xpcomco  9031  omxpenlem  9042  mpoaddf  11162  mpomulf  11163  cpnnen  16197  dmscut  27723  mpomptxf  32601  df1stres  32627  df2ndres  32628  f1od2  32644  sxbrsigalem5  34279  cbvmpovw2  36230  cbvmpo1vw2  36231  cbvmpo2vw2  36232  cbvmpodavw2  36279  cbvmpo1davw2  36280  cbvmpo2davw2  36281  bj-dfmpoa  37106  csbmpo123  37319  uncf  37593  unccur  37597  mpobi123f  38156  cbvmpo2  45091  cbvmpo1  45092  mpomptx2  48323  cbvmpox2  48324  sectpropdlem  49025  invpropdlem  49027  isopropdlem  49029
  Copyright terms: Public domain W3C validator