MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mpo Structured version   Visualization version   GIF version

Definition df-mpo 7414
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5233 for two arguments. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpo (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Detailed syntax breakdown of Definition df-mpo
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
3 cA . . 3 class 𝐴
4 cB . . 3 class 𝐵
5 cC . . 3 class 𝐶
61, 2, 3, 4, 5cmpo 7411 . 2 class (𝑥𝐴, 𝑦𝐵𝐶)
71cv 1541 . . . . . 6 class 𝑥
87, 3wcel 2107 . . . . 5 wff 𝑥𝐴
92cv 1541 . . . . . 6 class 𝑦
109, 4wcel 2107 . . . . 5 wff 𝑦𝐵
118, 10wa 397 . . . 4 wff (𝑥𝐴𝑦𝐵)
12 vz . . . . . 6 setvar 𝑧
1312cv 1541 . . . . 5 class 𝑧
1413, 5wceq 1542 . . . 4 wff 𝑧 = 𝐶
1511, 14wa 397 . . 3 wff ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
1615, 1, 2, 12coprab 7410 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
176, 16wceq 1542 1 wff (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
Colors of variables: wff setvar class
This definition is referenced by:  mpoeq123  7481  mpoeq123dva  7483  mpoeq3dva  7486  nfmpo1  7489  nfmpo2  7490  nfmpo  7491  0mpo0  7492  mpo0  7494  cbvmpox  7502  mpov  7520  mpomptx  7521  resmpo  7528  mpofun  7532  mpofunOLD  7533  mpo2eqb  7541  rnmpo  7542  reldmmpo  7543  elrnmpores  7546  ovmpt4g  7555  mpondm0  7647  elmpocl  7648  fmpox  8053  bropopvvv  8076  bropfvvvv  8078  tposmpo  8248  erovlem  8807  xpcomco  9062  omxpenlem  9073  cpnnen  16172  dmscut  27313  mpomptxf  31936  df1stres  31956  df2ndres  31957  f1od2  31977  sxbrsigalem5  33318  mpomulf  35190  mpoaddf  35216  bj-dfmpoa  36047  csbmpo123  36260  uncf  36515  unccur  36519  mpobi123f  37078  cbvmpo2  43834  cbvmpo1  43835  mpomptx2  47058  cbvmpox2  47059
  Copyright terms: Public domain W3C validator