Detailed syntax breakdown of Definition df-bj-tophom
Step | Hyp | Ref
| Expression |
1 | | ctophom 35222 |
. 2
class Top⟶ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | ctps 21989 |
. . 3
class
TopSp |
5 | | vf |
. . . . . . . . 9
setvar 𝑓 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑓 |
7 | 6 | ccnv 5579 |
. . . . . . 7
class ◡𝑓 |
8 | | vu |
. . . . . . . 8
setvar 𝑢 |
9 | 8 | cv 1538 |
. . . . . . 7
class 𝑢 |
10 | 7, 9 | cima 5583 |
. . . . . 6
class (◡𝑓 “ 𝑢) |
11 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
12 | | ctopn 17049 |
. . . . . . 7
class
TopOpen |
13 | 11, 12 | cfv 6418 |
. . . . . 6
class
(TopOpen‘𝑥) |
14 | 10, 13 | wcel 2108 |
. . . . 5
wff (◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥) |
15 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
16 | 15, 12 | cfv 6418 |
. . . . 5
class
(TopOpen‘𝑦) |
17 | 14, 8, 16 | wral 3063 |
. . . 4
wff
∀𝑢 ∈
(TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥) |
18 | | cbs 16840 |
. . . . . 6
class
Base |
19 | 11, 18 | cfv 6418 |
. . . . 5
class
(Base‘𝑥) |
20 | 15, 18 | cfv 6418 |
. . . . 5
class
(Base‘𝑦) |
21 | | csethom 35220 |
. . . . 5
class Set⟶ |
22 | 19, 20, 21 | co 7255 |
. . . 4
class
((Base‘𝑥)
Set⟶ (Base‘𝑦)) |
23 | 17, 5, 22 | crab 3067 |
. . 3
class {𝑓 ∈ ((Base‘𝑥) Set⟶
(Base‘𝑦)) ∣
∀𝑢 ∈
(TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)} |
24 | 2, 3, 4, 4, 23 | cmpo 7257 |
. 2
class (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶
(Base‘𝑦)) ∣
∀𝑢 ∈
(TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)}) |
25 | 1, 24 | wceq 1539 |
1
wff Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)}) |