Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-tophom Structured version   Visualization version   GIF version

Definition df-bj-tophom 35296
Description: Define the set of continuous functions (morphisms of topological spaces) between two topological spaces. Similar to df-cn 22378 (which is in terms of topologies instead of topological spaces). (Contributed by BJ, 10-Feb-2022.)
Assertion
Ref Expression
df-bj-tophom Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)})
Distinct variable group:   𝑥,𝑓,𝑦,𝑢

Detailed syntax breakdown of Definition df-bj-tophom
StepHypRef Expression
1 ctophom 35295 . 2 class Top
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 ctps 22081 . . 3 class TopSp
5 vf . . . . . . . . 9 setvar 𝑓
65cv 1538 . . . . . . . 8 class 𝑓
76ccnv 5588 . . . . . . 7 class 𝑓
8 vu . . . . . . . 8 setvar 𝑢
98cv 1538 . . . . . . 7 class 𝑢
107, 9cima 5592 . . . . . 6 class (𝑓𝑢)
112cv 1538 . . . . . . 7 class 𝑥
12 ctopn 17132 . . . . . . 7 class TopOpen
1311, 12cfv 6433 . . . . . 6 class (TopOpen‘𝑥)
1410, 13wcel 2106 . . . . 5 wff (𝑓𝑢) ∈ (TopOpen‘𝑥)
153cv 1538 . . . . . 6 class 𝑦
1615, 12cfv 6433 . . . . 5 class (TopOpen‘𝑦)
1714, 8, 16wral 3064 . . . 4 wff 𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)
18 cbs 16912 . . . . . 6 class Base
1911, 18cfv 6433 . . . . 5 class (Base‘𝑥)
2015, 18cfv 6433 . . . . 5 class (Base‘𝑦)
21 csethom 35293 . . . . 5 class Set
2219, 20, 21co 7275 . . . 4 class ((Base‘𝑥) Set⟶ (Base‘𝑦))
2317, 5, 22crab 3068 . . 3 class {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)}
242, 3, 4, 4, 23cmpo 7277 . 2 class (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)})
251, 24wceq 1539 1 wff Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator