MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cn Structured version   Visualization version   GIF version

Definition df-cn 21835
Description: Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 21843 for the predicate form. (Contributed by NM, 17-Oct-2006.)
Assertion
Ref Expression
df-cn Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
Distinct variable group:   𝑗,𝑘,𝑓,𝑦

Detailed syntax breakdown of Definition df-cn
StepHypRef Expression
1 ccn 21832 . 2 class Cn
2 vj . . 3 setvar 𝑗
3 vk . . 3 setvar 𝑘
4 ctop 21501 . . 3 class Top
5 vf . . . . . . . . 9 setvar 𝑓
65cv 1537 . . . . . . . 8 class 𝑓
76ccnv 5522 . . . . . . 7 class 𝑓
8 vy . . . . . . . 8 setvar 𝑦
98cv 1537 . . . . . . 7 class 𝑦
107, 9cima 5526 . . . . . 6 class (𝑓𝑦)
112cv 1537 . . . . . 6 class 𝑗
1210, 11wcel 2112 . . . . 5 wff (𝑓𝑦) ∈ 𝑗
133cv 1537 . . . . 5 class 𝑘
1412, 8, 13wral 3109 . . . 4 wff 𝑦𝑘 (𝑓𝑦) ∈ 𝑗
1513cuni 4803 . . . . 5 class 𝑘
1611cuni 4803 . . . . 5 class 𝑗
17 cmap 8393 . . . . 5 class m
1815, 16, 17co 7139 . . . 4 class ( 𝑘m 𝑗)
1914, 5, 18crab 3113 . . 3 class {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗}
202, 3, 4, 4, 19cmpo 7141 . 2 class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
211, 20wceq 1538 1 wff Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
Colors of variables: wff setvar class
This definition is referenced by:  cnfval  21841  iscn2  21846
  Copyright terms: Public domain W3C validator