Detailed syntax breakdown of Definition df-cn
| Step | Hyp | Ref
| Expression |
| 1 | | ccn 23160 |
. 2
class
Cn |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | vk |
. . 3
setvar 𝑘 |
| 4 | | ctop 22829 |
. . 3
class
Top |
| 5 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 7 | 6 | ccnv 5653 |
. . . . . . 7
class ◡𝑓 |
| 8 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 9 | 8 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 10 | 7, 9 | cima 5657 |
. . . . . 6
class (◡𝑓 “ 𝑦) |
| 11 | 2 | cv 1539 |
. . . . . 6
class 𝑗 |
| 12 | 10, 11 | wcel 2108 |
. . . . 5
wff (◡𝑓 “ 𝑦) ∈ 𝑗 |
| 13 | 3 | cv 1539 |
. . . . 5
class 𝑘 |
| 14 | 12, 8, 13 | wral 3051 |
. . . 4
wff
∀𝑦 ∈
𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗 |
| 15 | 13 | cuni 4883 |
. . . . 5
class ∪ 𝑘 |
| 16 | 11 | cuni 4883 |
. . . . 5
class ∪ 𝑗 |
| 17 | | cmap 8838 |
. . . . 5
class
↑m |
| 18 | 15, 16, 17 | co 7403 |
. . . 4
class (∪ 𝑘
↑m ∪ 𝑗) |
| 19 | 14, 5, 18 | crab 3415 |
. . 3
class {𝑓 ∈ (∪ 𝑘
↑m ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗} |
| 20 | 2, 3, 4, 4, 19 | cmpo 7405 |
. 2
class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
| 21 | 1, 20 | wceq 1540 |
1
wff Cn =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘
↑m ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |