|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bloval | Structured version Visualization version GIF version | ||
| Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | 
| bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) | 
| bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | 
| Ref | Expression | 
|---|---|
| bloval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bloval.5 | . 2 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 2 | oveq1 7439 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤)) | |
| 3 | oveq1 7439 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤)) | |
| 4 | 3 | fveq1d 6907 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡)) | 
| 5 | 4 | breq1d 5152 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞)) | 
| 6 | 2, 5 | rabeqbidv 3454 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞}) | 
| 7 | oveq2 7440 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊)) | |
| 8 | bloval.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 7, 8 | eqtr4di 2794 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿) | 
| 10 | oveq2 7440 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊)) | |
| 11 | bloval.3 | . . . . . . 7 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 12 | 10, 11 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁) | 
| 13 | 12 | fveq1d 6907 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁‘𝑡)) | 
| 14 | 13 | breq1d 5152 | . . . 4 ⊢ (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁‘𝑡) < +∞)) | 
| 15 | 9, 14 | rabeqbidv 3454 | . . 3 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) | 
| 16 | df-blo 30766 | . . 3 ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | |
| 17 | 8 | ovexi 7466 | . . . 4 ⊢ 𝐿 ∈ V | 
| 18 | 17 | rabex 5338 | . . 3 ⊢ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ∈ V | 
| 19 | 6, 15, 16, 18 | ovmpo 7594 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) | 
| 20 | 1, 19 | eqtrid 2788 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 +∞cpnf 11293 < clt 11296 NrmCVeccnv 30604 LnOp clno 30760 normOpOLD cnmoo 30761 BLnOp cblo 30762 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-blo 30766 | 
| This theorem is referenced by: isblo 30802 hhbloi 31922 | 
| Copyright terms: Public domain | W3C validator |