MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloval Structured version   Visualization version   GIF version

Theorem bloval 30034
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑁   𝑡,𝑈   𝑡,𝑊
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem bloval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bloval.5 . 2 𝐵 = (𝑈 BLnOp 𝑊)
2 oveq1 7416 . . . 4 (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤))
3 oveq1 7416 . . . . . 6 (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤))
43fveq1d 6894 . . . . 5 (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡))
54breq1d 5159 . . . 4 (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞))
62, 5rabeqbidv 3450 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞})
7 oveq2 7417 . . . . 5 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊))
8 bloval.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
97, 8eqtr4di 2791 . . . 4 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿)
10 oveq2 7417 . . . . . . 7 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊))
11 bloval.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
1210, 11eqtr4di 2791 . . . . . 6 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁)
1312fveq1d 6894 . . . . 5 (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁𝑡))
1413breq1d 5159 . . . 4 (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁𝑡) < +∞))
159, 14rabeqbidv 3450 . . 3 (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
16 df-blo 29999 . . 3 BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞})
178ovexi 7443 . . . 4 𝐿 ∈ V
1817rabex 5333 . . 3 {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ∈ V
196, 15, 16, 18ovmpo 7568 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
201, 19eqtrid 2785 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433   class class class wbr 5149  cfv 6544  (class class class)co 7409  +∞cpnf 11245   < clt 11248  NrmCVeccnv 29837   LnOp clno 29993   normOpOLD cnmoo 29994   BLnOp cblo 29995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-blo 29999
This theorem is referenced by:  isblo  30035  hhbloi  31155
  Copyright terms: Public domain W3C validator