| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bloval | Structured version Visualization version GIF version | ||
| Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| Ref | Expression |
|---|---|
| bloval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.5 | . 2 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 2 | oveq1 7394 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤)) | |
| 3 | oveq1 7394 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤)) | |
| 4 | 3 | fveq1d 6860 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡)) |
| 5 | 4 | breq1d 5117 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞)) |
| 6 | 2, 5 | rabeqbidv 3424 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞}) |
| 7 | oveq2 7395 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊)) | |
| 8 | bloval.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿) |
| 10 | oveq2 7395 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊)) | |
| 11 | bloval.3 | . . . . . . 7 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁) |
| 13 | 12 | fveq1d 6860 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁‘𝑡)) |
| 14 | 13 | breq1d 5117 | . . . 4 ⊢ (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁‘𝑡) < +∞)) |
| 15 | 9, 14 | rabeqbidv 3424 | . . 3 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| 16 | df-blo 30675 | . . 3 ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | |
| 17 | 8 | ovexi 7421 | . . . 4 ⊢ 𝐿 ∈ V |
| 18 | 17 | rabex 5294 | . . 3 ⊢ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ∈ V |
| 19 | 6, 15, 16, 18 | ovmpo 7549 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| 20 | 1, 19 | eqtrid 2776 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 +∞cpnf 11205 < clt 11208 NrmCVeccnv 30513 LnOp clno 30669 normOpOLD cnmoo 30670 BLnOp cblo 30671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-blo 30675 |
| This theorem is referenced by: isblo 30711 hhbloi 31831 |
| Copyright terms: Public domain | W3C validator |