MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloval Structured version   Visualization version   GIF version

Theorem bloval 29044
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑁   𝑡,𝑈   𝑡,𝑊
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem bloval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bloval.5 . 2 𝐵 = (𝑈 BLnOp 𝑊)
2 oveq1 7262 . . . 4 (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤))
3 oveq1 7262 . . . . . 6 (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤))
43fveq1d 6758 . . . . 5 (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡))
54breq1d 5080 . . . 4 (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞))
62, 5rabeqbidv 3410 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞})
7 oveq2 7263 . . . . 5 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊))
8 bloval.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
97, 8eqtr4di 2797 . . . 4 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿)
10 oveq2 7263 . . . . . . 7 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊))
11 bloval.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
1210, 11eqtr4di 2797 . . . . . 6 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁)
1312fveq1d 6758 . . . . 5 (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁𝑡))
1413breq1d 5080 . . . 4 (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁𝑡) < +∞))
159, 14rabeqbidv 3410 . . 3 (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
16 df-blo 29009 . . 3 BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞})
178ovexi 7289 . . . 4 𝐿 ∈ V
1817rabex 5251 . . 3 {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ∈ V
196, 15, 16, 18ovmpo 7411 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
201, 19syl5eq 2791 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070  cfv 6418  (class class class)co 7255  +∞cpnf 10937   < clt 10940  NrmCVeccnv 28847   LnOp clno 29003   normOpOLD cnmoo 29004   BLnOp cblo 29005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-blo 29009
This theorem is referenced by:  isblo  29045  hhbloi  30165
  Copyright terms: Public domain W3C validator