MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloval Structured version   Visualization version   GIF version

Theorem bloval 30767
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑁   𝑡,𝑈   𝑡,𝑊
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem bloval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bloval.5 . 2 𝐵 = (𝑈 BLnOp 𝑊)
2 oveq1 7417 . . . 4 (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤))
3 oveq1 7417 . . . . . 6 (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤))
43fveq1d 6883 . . . . 5 (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡))
54breq1d 5134 . . . 4 (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞))
62, 5rabeqbidv 3439 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞})
7 oveq2 7418 . . . . 5 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊))
8 bloval.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
97, 8eqtr4di 2789 . . . 4 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿)
10 oveq2 7418 . . . . . . 7 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊))
11 bloval.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
1210, 11eqtr4di 2789 . . . . . 6 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁)
1312fveq1d 6883 . . . . 5 (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁𝑡))
1413breq1d 5134 . . . 4 (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁𝑡) < +∞))
159, 14rabeqbidv 3439 . . 3 (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
16 df-blo 30732 . . 3 BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞})
178ovexi 7444 . . . 4 𝐿 ∈ V
1817rabex 5314 . . 3 {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ∈ V
196, 15, 16, 18ovmpo 7572 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
201, 19eqtrid 2783 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420   class class class wbr 5124  cfv 6536  (class class class)co 7410  +∞cpnf 11271   < clt 11274  NrmCVeccnv 30570   LnOp clno 30726   normOpOLD cnmoo 30727   BLnOp cblo 30728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-blo 30732
This theorem is referenced by:  isblo  30768  hhbloi  31888
  Copyright terms: Public domain W3C validator