| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bloval | Structured version Visualization version GIF version | ||
| Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| Ref | Expression |
|---|---|
| bloval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.5 | . 2 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 2 | oveq1 7417 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤)) | |
| 3 | oveq1 7417 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤)) | |
| 4 | 3 | fveq1d 6883 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡)) |
| 5 | 4 | breq1d 5134 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞)) |
| 6 | 2, 5 | rabeqbidv 3439 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞}) |
| 7 | oveq2 7418 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊)) | |
| 8 | bloval.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 7, 8 | eqtr4di 2789 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿) |
| 10 | oveq2 7418 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊)) | |
| 11 | bloval.3 | . . . . . . 7 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 12 | 10, 11 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁) |
| 13 | 12 | fveq1d 6883 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁‘𝑡)) |
| 14 | 13 | breq1d 5134 | . . . 4 ⊢ (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁‘𝑡) < +∞)) |
| 15 | 9, 14 | rabeqbidv 3439 | . . 3 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| 16 | df-blo 30732 | . . 3 ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | |
| 17 | 8 | ovexi 7444 | . . . 4 ⊢ 𝐿 ∈ V |
| 18 | 17 | rabex 5314 | . . 3 ⊢ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ∈ V |
| 19 | 6, 15, 16, 18 | ovmpo 7572 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| 20 | 1, 19 | eqtrid 2783 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 +∞cpnf 11271 < clt 11274 NrmCVeccnv 30570 LnOp clno 30726 normOpOLD cnmoo 30727 BLnOp cblo 30728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-blo 30732 |
| This theorem is referenced by: isblo 30768 hhbloi 31888 |
| Copyright terms: Public domain | W3C validator |