![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bloval | Structured version Visualization version GIF version |
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
bloval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bloval.5 | . 2 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
2 | oveq1 7416 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤)) | |
3 | oveq1 7416 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤)) | |
4 | 3 | fveq1d 6894 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡)) |
5 | 4 | breq1d 5159 | . . . 4 ⊢ (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞)) |
6 | 2, 5 | rabeqbidv 3450 | . . 3 ⊢ (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞}) |
7 | oveq2 7417 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊)) | |
8 | bloval.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | 7, 8 | eqtr4di 2791 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿) |
10 | oveq2 7417 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊)) | |
11 | bloval.3 | . . . . . . 7 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
12 | 10, 11 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁) |
13 | 12 | fveq1d 6894 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁‘𝑡)) |
14 | 13 | breq1d 5159 | . . . 4 ⊢ (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁‘𝑡) < +∞)) |
15 | 9, 14 | rabeqbidv 3450 | . . 3 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
16 | df-blo 29999 | . . 3 ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) | |
17 | 8 | ovexi 7443 | . . . 4 ⊢ 𝐿 ∈ V |
18 | 17 | rabex 5333 | . . 3 ⊢ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ∈ V |
19 | 6, 15, 16, 18 | ovmpo 7568 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
20 | 1, 19 | eqtrid 2785 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 +∞cpnf 11245 < clt 11248 NrmCVeccnv 29837 LnOp clno 29993 normOpOLD cnmoo 29994 BLnOp cblo 29995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-blo 29999 |
This theorem is referenced by: isblo 30035 hhbloi 31155 |
Copyright terms: Public domain | W3C validator |