MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloval Structured version   Visualization version   GIF version

Theorem bloval 28564
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑁   𝑡,𝑈   𝑡,𝑊
Allowed substitution hint:   𝐵(𝑡)

Proof of Theorem bloval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bloval.5 . 2 𝐵 = (𝑈 BLnOp 𝑊)
2 oveq1 7142 . . . 4 (𝑢 = 𝑈 → (𝑢 LnOp 𝑤) = (𝑈 LnOp 𝑤))
3 oveq1 7142 . . . . . 6 (𝑢 = 𝑈 → (𝑢 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑤))
43fveq1d 6647 . . . . 5 (𝑢 = 𝑈 → ((𝑢 normOpOLD 𝑤)‘𝑡) = ((𝑈 normOpOLD 𝑤)‘𝑡))
54breq1d 5040 . . . 4 (𝑢 = 𝑈 → (((𝑢 normOpOLD 𝑤)‘𝑡) < +∞ ↔ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞))
62, 5rabeqbidv 3433 . . 3 (𝑢 = 𝑈 → {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞})
7 oveq2 7143 . . . . 5 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = (𝑈 LnOp 𝑊))
8 bloval.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
97, 8eqtr4di 2851 . . . 4 (𝑤 = 𝑊 → (𝑈 LnOp 𝑤) = 𝐿)
10 oveq2 7143 . . . . . . 7 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = (𝑈 normOpOLD 𝑊))
11 bloval.3 . . . . . . 7 𝑁 = (𝑈 normOpOLD 𝑊)
1210, 11eqtr4di 2851 . . . . . 6 (𝑤 = 𝑊 → (𝑈 normOpOLD 𝑤) = 𝑁)
1312fveq1d 6647 . . . . 5 (𝑤 = 𝑊 → ((𝑈 normOpOLD 𝑤)‘𝑡) = (𝑁𝑡))
1413breq1d 5040 . . . 4 (𝑤 = 𝑊 → (((𝑈 normOpOLD 𝑤)‘𝑡) < +∞ ↔ (𝑁𝑡) < +∞))
159, 14rabeqbidv 3433 . . 3 (𝑤 = 𝑊 → {𝑡 ∈ (𝑈 LnOp 𝑤) ∣ ((𝑈 normOpOLD 𝑤)‘𝑡) < +∞} = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
16 df-blo 28529 . . 3 BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞})
178ovexi 7169 . . . 4 𝐿 ∈ V
1817rabex 5199 . . 3 {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ∈ V
196, 15, 16, 18ovmpo 7289 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 BLnOp 𝑊) = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
201, 19syl5eq 2845 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110   class class class wbr 5030  cfv 6324  (class class class)co 7135  +∞cpnf 10661   < clt 10664  NrmCVeccnv 28367   LnOp clno 28523   normOpOLD cnmoo 28524   BLnOp cblo 28525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-blo 28529
This theorem is referenced by:  isblo  28565  hhbloi  29685
  Copyright terms: Public domain W3C validator