MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmoo Structured version   Visualization version   GIF version

Definition df-nmoo 30725
Description: Define the norm of an operator between two normed complex vector spaces. This definition produces an operator norm function for each pair of vector spaces 𝑢, 𝑤. Based on definition of linear operator norm in [AkhiezerGlazman] p. 39, although we define it for all operators for convenience. It isn't necessarily meaningful for nonlinear operators, since it doesn't take into account operator values at vectors with norm greater than 1. See Equation 2 of [Kreyszig] p. 92 for a definition that does (although it ignores the value at the zero vector). However, operator norms are rarely if ever used for nonlinear operators. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-nmoo normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
Distinct variable group:   𝑢,𝑡,𝑤,𝑥,𝑧

Detailed syntax breakdown of Definition df-nmoo
StepHypRef Expression
1 cnmoo 30721 . 2 class normOpOLD
2 vu . . 3 setvar 𝑢
3 vw . . 3 setvar 𝑤
4 cnv 30564 . . 3 class NrmCVec
5 vt . . . 4 setvar 𝑡
63cv 1540 . . . . . 6 class 𝑤
7 cba 30566 . . . . . 6 class BaseSet
86, 7cfv 6481 . . . . 5 class (BaseSet‘𝑤)
92cv 1540 . . . . . 6 class 𝑢
109, 7cfv 6481 . . . . 5 class (BaseSet‘𝑢)
11 cmap 8750 . . . . 5 class m
128, 10, 11co 7346 . . . 4 class ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢))
13 vz . . . . . . . . . . 11 setvar 𝑧
1413cv 1540 . . . . . . . . . 10 class 𝑧
15 cnmcv 30570 . . . . . . . . . . 11 class normCV
169, 15cfv 6481 . . . . . . . . . 10 class (normCV𝑢)
1714, 16cfv 6481 . . . . . . . . 9 class ((normCV𝑢)‘𝑧)
18 c1 11007 . . . . . . . . 9 class 1
19 cle 11147 . . . . . . . . 9 class
2017, 18, 19wbr 5089 . . . . . . . 8 wff ((normCV𝑢)‘𝑧) ≤ 1
21 vx . . . . . . . . . 10 setvar 𝑥
2221cv 1540 . . . . . . . . 9 class 𝑥
235cv 1540 . . . . . . . . . . 11 class 𝑡
2414, 23cfv 6481 . . . . . . . . . 10 class (𝑡𝑧)
256, 15cfv 6481 . . . . . . . . . 10 class (normCV𝑤)
2624, 25cfv 6481 . . . . . . . . 9 class ((normCV𝑤)‘(𝑡𝑧))
2722, 26wceq 1541 . . . . . . . 8 wff 𝑥 = ((normCV𝑤)‘(𝑡𝑧))
2820, 27wa 395 . . . . . . 7 wff (((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))
2928, 13, 10wrex 3056 . . . . . 6 wff 𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))
3029, 21cab 2709 . . . . 5 class {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}
31 cxr 11145 . . . . 5 class *
32 clt 11146 . . . . 5 class <
3330, 31, 32csup 9324 . . . 4 class sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )
345, 12, 33cmpt 5170 . . 3 class (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ))
352, 3, 4, 4, 34cmpo 7348 . 2 class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
361, 35wceq 1541 1 wff normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoofval  30742
  Copyright terms: Public domain W3C validator