MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmoo Structured version   Visualization version   GIF version

Definition df-nmoo 29107
Description: Define the norm of an operator between two normed complex vector spaces. This definition produces an operator norm function for each pair of vector spaces 𝑢, 𝑤. Based on definition of linear operator norm in [AkhiezerGlazman] p. 39, although we define it for all operators for convenience. It isn't necessarily meaningful for nonlinear operators, since it doesn't take into account operator values at vectors with norm greater than 1. See Equation 2 of [Kreyszig] p. 92 for a definition that does (although it ignores the value at the zero vector). However, operator norms are rarely if ever used for nonlinear operators. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-nmoo normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
Distinct variable group:   𝑢,𝑡,𝑤,𝑥,𝑧

Detailed syntax breakdown of Definition df-nmoo
StepHypRef Expression
1 cnmoo 29103 . 2 class normOpOLD
2 vu . . 3 setvar 𝑢
3 vw . . 3 setvar 𝑤
4 cnv 28946 . . 3 class NrmCVec
5 vt . . . 4 setvar 𝑡
63cv 1538 . . . . . 6 class 𝑤
7 cba 28948 . . . . . 6 class BaseSet
86, 7cfv 6433 . . . . 5 class (BaseSet‘𝑤)
92cv 1538 . . . . . 6 class 𝑢
109, 7cfv 6433 . . . . 5 class (BaseSet‘𝑢)
11 cmap 8615 . . . . 5 class m
128, 10, 11co 7275 . . . 4 class ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢))
13 vz . . . . . . . . . . 11 setvar 𝑧
1413cv 1538 . . . . . . . . . 10 class 𝑧
15 cnmcv 28952 . . . . . . . . . . 11 class normCV
169, 15cfv 6433 . . . . . . . . . 10 class (normCV𝑢)
1714, 16cfv 6433 . . . . . . . . 9 class ((normCV𝑢)‘𝑧)
18 c1 10872 . . . . . . . . 9 class 1
19 cle 11010 . . . . . . . . 9 class
2017, 18, 19wbr 5074 . . . . . . . 8 wff ((normCV𝑢)‘𝑧) ≤ 1
21 vx . . . . . . . . . 10 setvar 𝑥
2221cv 1538 . . . . . . . . 9 class 𝑥
235cv 1538 . . . . . . . . . . 11 class 𝑡
2414, 23cfv 6433 . . . . . . . . . 10 class (𝑡𝑧)
256, 15cfv 6433 . . . . . . . . . 10 class (normCV𝑤)
2624, 25cfv 6433 . . . . . . . . 9 class ((normCV𝑤)‘(𝑡𝑧))
2722, 26wceq 1539 . . . . . . . 8 wff 𝑥 = ((normCV𝑤)‘(𝑡𝑧))
2820, 27wa 396 . . . . . . 7 wff (((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))
2928, 13, 10wrex 3065 . . . . . 6 wff 𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))
3029, 21cab 2715 . . . . 5 class {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}
31 cxr 11008 . . . . 5 class *
32 clt 11009 . . . . 5 class <
3330, 31, 32csup 9199 . . . 4 class sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )
345, 12, 33cmpt 5157 . . 3 class (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ))
352, 3, 4, 4, 34cmpo 7277 . 2 class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
361, 35wceq 1539 1 wff normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoofval  29124
  Copyright terms: Public domain W3C validator