Detailed syntax breakdown of Definition df-bnd
| Step | Hyp | Ref
| Expression |
| 1 | | cbnd 37796 |
. 2
class
Bnd |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 5 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 6 | 5 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 7 | | vr |
. . . . . . . . 9
setvar 𝑟 |
| 8 | 7 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 9 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
| 10 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑚 |
| 11 | | cbl 21307 |
. . . . . . . . 9
class
ball |
| 12 | 10, 11 | cfv 6536 |
. . . . . . . 8
class
(ball‘𝑚) |
| 13 | 6, 8, 12 | co 7410 |
. . . . . . 7
class (𝑦(ball‘𝑚)𝑟) |
| 14 | 4, 13 | wceq 1540 |
. . . . . 6
wff 𝑥 = (𝑦(ball‘𝑚)𝑟) |
| 15 | | crp 13013 |
. . . . . 6
class
ℝ+ |
| 16 | 14, 7, 15 | wrex 3061 |
. . . . 5
wff
∃𝑟 ∈
ℝ+ 𝑥 =
(𝑦(ball‘𝑚)𝑟) |
| 17 | 16, 5, 4 | wral 3052 |
. . . 4
wff
∀𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟) |
| 18 | | cmet 21306 |
. . . . 5
class
Met |
| 19 | 4, 18 | cfv 6536 |
. . . 4
class
(Met‘𝑥) |
| 20 | 17, 9, 19 | crab 3420 |
. . 3
class {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)} |
| 21 | 2, 3, 20 | cmpt 5206 |
. 2
class (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) |
| 22 | 1, 21 | wceq 1540 |
1
wff Bnd =
(𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) |