Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnd Structured version   Visualization version   GIF version

Definition df-bnd 36951
Description: Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
df-bnd Bnd = (π‘₯ ∈ V ↦ {π‘š ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)})
Distinct variable group:   π‘š,π‘Ÿ,π‘₯,𝑦

Detailed syntax breakdown of Definition df-bnd
StepHypRef Expression
1 cbnd 36939 . 2 class Bnd
2 vx . . 3 setvar π‘₯
3 cvv 3473 . . 3 class V
42cv 1539 . . . . . . 7 class π‘₯
5 vy . . . . . . . . 9 setvar 𝑦
65cv 1539 . . . . . . . 8 class 𝑦
7 vr . . . . . . . . 9 setvar π‘Ÿ
87cv 1539 . . . . . . . 8 class π‘Ÿ
9 vm . . . . . . . . . 10 setvar π‘š
109cv 1539 . . . . . . . . 9 class π‘š
11 cbl 21132 . . . . . . . . 9 class ball
1210, 11cfv 6543 . . . . . . . 8 class (ballβ€˜π‘š)
136, 8, 12co 7412 . . . . . . 7 class (𝑦(ballβ€˜π‘š)π‘Ÿ)
144, 13wceq 1540 . . . . . 6 wff π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)
15 crp 12979 . . . . . 6 class ℝ+
1614, 7, 15wrex 3069 . . . . 5 wff βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)
1716, 5, 4wral 3060 . . . 4 wff βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)
18 cmet 21131 . . . . 5 class Met
194, 18cfv 6543 . . . 4 class (Metβ€˜π‘₯)
2017, 9, 19crab 3431 . . 3 class {π‘š ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)}
212, 3, 20cmpt 5231 . 2 class (π‘₯ ∈ V ↦ {π‘š ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)})
221, 21wceq 1540 1 wff Bnd = (π‘₯ ∈ V ↦ {π‘š ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)})
Colors of variables: wff setvar class
This definition is referenced by:  isbnd  36952
  Copyright terms: Public domain W3C validator