Detailed syntax breakdown of Definition df-bnd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cbnd 37775 | . 2
class
Bnd | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 | 2 | cv 1538 | . . . . . . 7
class 𝑥 | 
| 5 |  | vy | . . . . . . . . 9
setvar 𝑦 | 
| 6 | 5 | cv 1538 | . . . . . . . 8
class 𝑦 | 
| 7 |  | vr | . . . . . . . . 9
setvar 𝑟 | 
| 8 | 7 | cv 1538 | . . . . . . . 8
class 𝑟 | 
| 9 |  | vm | . . . . . . . . . 10
setvar 𝑚 | 
| 10 | 9 | cv 1538 | . . . . . . . . 9
class 𝑚 | 
| 11 |  | cbl 21352 | . . . . . . . . 9
class
ball | 
| 12 | 10, 11 | cfv 6560 | . . . . . . . 8
class
(ball‘𝑚) | 
| 13 | 6, 8, 12 | co 7432 | . . . . . . 7
class (𝑦(ball‘𝑚)𝑟) | 
| 14 | 4, 13 | wceq 1539 | . . . . . 6
wff 𝑥 = (𝑦(ball‘𝑚)𝑟) | 
| 15 |  | crp 13035 | . . . . . 6
class
ℝ+ | 
| 16 | 14, 7, 15 | wrex 3069 | . . . . 5
wff
∃𝑟 ∈
ℝ+ 𝑥 =
(𝑦(ball‘𝑚)𝑟) | 
| 17 | 16, 5, 4 | wral 3060 | . . . 4
wff
∀𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟) | 
| 18 |  | cmet 21351 | . . . . 5
class
Met | 
| 19 | 4, 18 | cfv 6560 | . . . 4
class
(Met‘𝑥) | 
| 20 | 17, 9, 19 | crab 3435 | . . 3
class {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)} | 
| 21 | 2, 3, 20 | cmpt 5224 | . 2
class (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) | 
| 22 | 1, 21 | wceq 1539 | 1
wff Bnd =
(𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) |