Step | Hyp | Ref
| Expression |
1 | | cbnd 36939 |
. 2
class
Bnd |
2 | | vx |
. . 3
setvar π₯ |
3 | | cvv 3473 |
. . 3
class
V |
4 | 2 | cv 1539 |
. . . . . . 7
class π₯ |
5 | | vy |
. . . . . . . . 9
setvar π¦ |
6 | 5 | cv 1539 |
. . . . . . . 8
class π¦ |
7 | | vr |
. . . . . . . . 9
setvar π |
8 | 7 | cv 1539 |
. . . . . . . 8
class π |
9 | | vm |
. . . . . . . . . 10
setvar π |
10 | 9 | cv 1539 |
. . . . . . . . 9
class π |
11 | | cbl 21132 |
. . . . . . . . 9
class
ball |
12 | 10, 11 | cfv 6543 |
. . . . . . . 8
class
(ballβπ) |
13 | 6, 8, 12 | co 7412 |
. . . . . . 7
class (π¦(ballβπ)π) |
14 | 4, 13 | wceq 1540 |
. . . . . 6
wff π₯ = (π¦(ballβπ)π) |
15 | | crp 12979 |
. . . . . 6
class
β+ |
16 | 14, 7, 15 | wrex 3069 |
. . . . 5
wff
βπ β
β+ π₯ =
(π¦(ballβπ)π) |
17 | 16, 5, 4 | wral 3060 |
. . . 4
wff
βπ¦ β
π₯ βπ β β+ π₯ = (π¦(ballβπ)π) |
18 | | cmet 21131 |
. . . . 5
class
Met |
19 | 4, 18 | cfv 6543 |
. . . 4
class
(Metβπ₯) |
20 | 17, 9, 19 | crab 3431 |
. . 3
class {π β (Metβπ₯) β£ βπ¦ β π₯ βπ β β+ π₯ = (π¦(ballβπ)π)} |
21 | 2, 3, 20 | cmpt 5231 |
. 2
class (π₯ β V β¦ {π β (Metβπ₯) β£ βπ¦ β π₯ βπ β β+ π₯ = (π¦(ballβπ)π)}) |
22 | 1, 21 | wceq 1540 |
1
wff Bnd =
(π₯ β V β¦ {π β (Metβπ₯) β£ βπ¦ β π₯ βπ β β+ π₯ = (π¦(ballβπ)π)}) |