Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivtotbnd Structured version   Visualization version   GIF version

Theorem equivtotbnd 37284
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivtotbnd.1 (𝜑𝑀 ∈ (TotBnd‘𝑋))
equivtotbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivtotbnd.3 (𝜑𝑅 ∈ ℝ+)
equivtotbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivtotbnd (𝜑𝑁 ∈ (TotBnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivtotbnd
Dummy variables 𝑣 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivtotbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 simpr 483 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
3 equivtotbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
43adantr 479 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
52, 4rpdivcld 13073 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
6 equivtotbnd.1 . . . . . . 7 (𝜑𝑀 ∈ (TotBnd‘𝑋))
76adantr 479 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ (TotBnd‘𝑋))
8 istotbnd3 37277 . . . . . . 7 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋))
98simprbi 495 . . . . . 6 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋)
107, 9syl 17 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋)
11 oveq2 7434 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝑀)𝑠) = (𝑥(ball‘𝑀)(𝑟 / 𝑅)))
1211iuneq2d 5029 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)))
1312eqeq1d 2730 . . . . . . 7 (𝑠 = (𝑟 / 𝑅) → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
1413rexbidv 3176 . . . . . 6 (𝑠 = (𝑟 / 𝑅) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
1514rspcv 3607 . . . . 5 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
165, 10, 15sylc 65 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋)
17 elfpw 9386 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
1817simplbi 496 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
1918adantl 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑣𝑋)
2019sselda 3982 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑥𝑋)
21 eqid 2728 . . . . . . . . . . . . . 14 (MetOpen‘𝑁) = (MetOpen‘𝑁)
22 eqid 2728 . . . . . . . . . . . . . 14 (MetOpen‘𝑀) = (MetOpen‘𝑀)
238simplbi 496 . . . . . . . . . . . . . . 15 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
246, 23syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (Met‘𝑋))
25 equivtotbnd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2621, 22, 1, 24, 3, 25metss2lem 24440 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2726anass1rs 653 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2827adantlr 713 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2920, 28syldan 589 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
3029ralrimiva 3143 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
31 ss2iun 5018 . . . . . . . . 9 (∀𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟) → 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))
3230, 31syl 17 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))
33 sseq1 4007 . . . . . . . 8 ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ↔ 𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
3432, 33syl5ibcom 244 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
351ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑁 ∈ (Met‘𝑋))
36 metxmet 24260 . . . . . . . . . . 11 (𝑁 ∈ (Met‘𝑋) → 𝑁 ∈ (∞Met‘𝑋))
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑁 ∈ (∞Met‘𝑋))
38 simpllr 774 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑟 ∈ ℝ+)
3938rpxrd 13057 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑟 ∈ ℝ*)
40 blssm 24344 . . . . . . . . . 10 ((𝑁 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4137, 20, 39, 40syl3anc 1368 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4241ralrimiva 3143 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
43 iunss 5052 . . . . . . . 8 ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋 ↔ ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4442, 43sylibr 233 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4534, 44jctild 524 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))))
46 eqss 3997 . . . . . 6 ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋 ↔ ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
4745, 46imbitrrdi 251 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
4847reximdva 3165 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
4916, 48mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋)
5049ralrimiva 3143 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋)
51 istotbnd3 37277 . 2 (𝑁 ∈ (TotBnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
521, 50, 51sylanbrc 581 1 (𝜑𝑁 ∈ (TotBnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3058  wrex 3067  cin 3948  wss 3949  𝒫 cpw 4606   ciun 5000   class class class wbr 5152  cfv 6553  (class class class)co 7426  Fincfn 8970   · cmul 11151  *cxr 11285  cle 11287   / cdiv 11909  +crp 13014  ∞Metcxmet 21271  Metcmet 21272  ballcbl 21273  MetOpencmopn 21276  TotBndctotbnd 37272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-rp 13015  df-xadd 13133  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-totbnd 37274
This theorem is referenced by:  equivbnd2  37298
  Copyright terms: Public domain W3C validator