Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivtotbnd Structured version   Visualization version   GIF version

Theorem equivtotbnd 37786
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivtotbnd.1 (𝜑𝑀 ∈ (TotBnd‘𝑋))
equivtotbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivtotbnd.3 (𝜑𝑅 ∈ ℝ+)
equivtotbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivtotbnd (𝜑𝑁 ∈ (TotBnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivtotbnd
Dummy variables 𝑣 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivtotbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 simpr 484 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
3 equivtotbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
43adantr 480 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
52, 4rpdivcld 13095 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
6 equivtotbnd.1 . . . . . . 7 (𝜑𝑀 ∈ (TotBnd‘𝑋))
76adantr 480 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ (TotBnd‘𝑋))
8 istotbnd3 37779 . . . . . . 7 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋))
98simprbi 496 . . . . . 6 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋)
107, 9syl 17 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋)
11 oveq2 7440 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝑀)𝑠) = (𝑥(ball‘𝑀)(𝑟 / 𝑅)))
1211iuneq2d 5021 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)))
1312eqeq1d 2738 . . . . . . 7 (𝑠 = (𝑟 / 𝑅) → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
1413rexbidv 3178 . . . . . 6 (𝑠 = (𝑟 / 𝑅) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
1514rspcv 3617 . . . . 5 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
165, 10, 15sylc 65 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋)
17 elfpw 9395 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
1817simplbi 497 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
1918adantl 481 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑣𝑋)
2019sselda 3982 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑥𝑋)
21 eqid 2736 . . . . . . . . . . . . . 14 (MetOpen‘𝑁) = (MetOpen‘𝑁)
22 eqid 2736 . . . . . . . . . . . . . 14 (MetOpen‘𝑀) = (MetOpen‘𝑀)
238simplbi 497 . . . . . . . . . . . . . . 15 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
246, 23syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (Met‘𝑋))
25 equivtotbnd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2621, 22, 1, 24, 3, 25metss2lem 24525 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2726anass1rs 655 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2827adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2920, 28syldan 591 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
3029ralrimiva 3145 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
31 ss2iun 5009 . . . . . . . . 9 (∀𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟) → 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))
3230, 31syl 17 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))
33 sseq1 4008 . . . . . . . 8 ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ↔ 𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
3432, 33syl5ibcom 245 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
351ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑁 ∈ (Met‘𝑋))
36 metxmet 24345 . . . . . . . . . . 11 (𝑁 ∈ (Met‘𝑋) → 𝑁 ∈ (∞Met‘𝑋))
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑁 ∈ (∞Met‘𝑋))
38 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑟 ∈ ℝ+)
3938rpxrd 13079 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑟 ∈ ℝ*)
40 blssm 24429 . . . . . . . . . 10 ((𝑁 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4137, 20, 39, 40syl3anc 1372 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4241ralrimiva 3145 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
43 iunss 5044 . . . . . . . 8 ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋 ↔ ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4442, 43sylibr 234 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4534, 44jctild 525 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))))
46 eqss 3998 . . . . . 6 ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋 ↔ ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
4745, 46imbitrrdi 252 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
4847reximdva 3167 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
4916, 48mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋)
5049ralrimiva 3145 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋)
51 istotbnd3 37779 . 2 (𝑁 ∈ (TotBnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
521, 50, 51sylanbrc 583 1 (𝜑𝑁 ∈ (TotBnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  cin 3949  wss 3950  𝒫 cpw 4599   ciun 4990   class class class wbr 5142  cfv 6560  (class class class)co 7432  Fincfn 8986   · cmul 11161  *cxr 11295  cle 11297   / cdiv 11921  +crp 13035  ∞Metcxmet 21350  Metcmet 21351  ballcbl 21352  MetOpencmopn 21355  TotBndctotbnd 37774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-rp 13036  df-xadd 13156  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-totbnd 37776
This theorem is referenced by:  equivbnd2  37800
  Copyright terms: Public domain W3C validator