Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivtotbnd Structured version   Visualization version   GIF version

Theorem equivtotbnd 35863
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivtotbnd.1 (𝜑𝑀 ∈ (TotBnd‘𝑋))
equivtotbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivtotbnd.3 (𝜑𝑅 ∈ ℝ+)
equivtotbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivtotbnd (𝜑𝑁 ∈ (TotBnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivtotbnd
Dummy variables 𝑣 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivtotbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 simpr 484 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
3 equivtotbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
43adantr 480 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
52, 4rpdivcld 12718 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
6 equivtotbnd.1 . . . . . . 7 (𝜑𝑀 ∈ (TotBnd‘𝑋))
76adantr 480 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ (TotBnd‘𝑋))
8 istotbnd3 35856 . . . . . . 7 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋))
98simprbi 496 . . . . . 6 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋)
107, 9syl 17 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋)
11 oveq2 7263 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝑀)𝑠) = (𝑥(ball‘𝑀)(𝑟 / 𝑅)))
1211iuneq2d 4950 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)))
1312eqeq1d 2740 . . . . . . 7 (𝑠 = (𝑟 / 𝑅) → ( 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
1413rexbidv 3225 . . . . . 6 (𝑠 = (𝑟 / 𝑅) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
1514rspcv 3547 . . . . 5 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)𝑠) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋))
165, 10, 15sylc 65 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋)
17 elfpw 9051 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
1817simplbi 497 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
1918adantl 481 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑣𝑋)
2019sselda 3917 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑥𝑋)
21 eqid 2738 . . . . . . . . . . . . . 14 (MetOpen‘𝑁) = (MetOpen‘𝑁)
22 eqid 2738 . . . . . . . . . . . . . 14 (MetOpen‘𝑀) = (MetOpen‘𝑀)
238simplbi 497 . . . . . . . . . . . . . . 15 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
246, 23syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (Met‘𝑋))
25 equivtotbnd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2621, 22, 1, 24, 3, 25metss2lem 23573 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2726anass1rs 651 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2827adantlr 711 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
2920, 28syldan 590 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
3029ralrimiva 3107 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟))
31 ss2iun 4939 . . . . . . . . 9 (∀𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝑁)𝑟) → 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))
3230, 31syl 17 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))
33 sseq1 3942 . . . . . . . 8 ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) ⊆ 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ↔ 𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
3432, 33syl5ibcom 244 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
351ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑁 ∈ (Met‘𝑋))
36 metxmet 23395 . . . . . . . . . . 11 (𝑁 ∈ (Met‘𝑋) → 𝑁 ∈ (∞Met‘𝑋))
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑁 ∈ (∞Met‘𝑋))
38 simpllr 772 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑟 ∈ ℝ+)
3938rpxrd 12702 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → 𝑟 ∈ ℝ*)
40 blssm 23479 . . . . . . . . . 10 ((𝑁 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4137, 20, 39, 40syl3anc 1369 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4241ralrimiva 3107 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
43 iunss 4971 . . . . . . . 8 ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋 ↔ ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4442, 43sylibr 233 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋)
4534, 44jctild 525 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟))))
46 eqss 3932 . . . . . 6 ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋 ↔ ( 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) ⊆ 𝑋𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟)))
4745, 46syl6ibr 251 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → ( 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
4847reximdva 3202 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑀)(𝑟 / 𝑅)) = 𝑋 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
4916, 48mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋)
5049ralrimiva 3107 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋)
51 istotbnd3 35856 . 2 (𝑁 ∈ (TotBnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑟) = 𝑋))
521, 50, 51sylanbrc 582 1 (𝜑𝑁 ∈ (TotBnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   ciun 4921   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691   · cmul 10807  *cxr 10939  cle 10941   / cdiv 11562  +crp 12659  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500  TotBndctotbnd 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660  df-xadd 12778  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-totbnd 35853
This theorem is referenced by:  equivbnd2  35877
  Copyright terms: Public domain W3C validator