Step | Hyp | Ref
| Expression |
1 | | equivtotbnd.2 |
. 2
β’ (π β π β (Metβπ)) |
2 | | simpr 485 |
. . . . . 6
β’ ((π β§ π β β+) β π β
β+) |
3 | | equivtotbnd.3 |
. . . . . . 7
β’ (π β π
β
β+) |
4 | 3 | adantr 481 |
. . . . . 6
β’ ((π β§ π β β+) β π
β
β+) |
5 | 2, 4 | rpdivcld 13029 |
. . . . 5
β’ ((π β§ π β β+) β (π / π
) β
β+) |
6 | | equivtotbnd.1 |
. . . . . . 7
β’ (π β π β (TotBndβπ)) |
7 | 6 | adantr 481 |
. . . . . 6
β’ ((π β§ π β β+) β π β (TotBndβπ)) |
8 | | istotbnd3 36627 |
. . . . . . 7
β’ (π β (TotBndβπ) β (π β (Metβπ) β§ βπ β β+ βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π ) = π)) |
9 | 8 | simprbi 497 |
. . . . . 6
β’ (π β (TotBndβπ) β βπ β β+
βπ£ β (π«
π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π ) = π) |
10 | 7, 9 | syl 17 |
. . . . 5
β’ ((π β§ π β β+) β
βπ β
β+ βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π ) = π) |
11 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = (π / π
) β (π₯(ballβπ)π ) = (π₯(ballβπ)(π / π
))) |
12 | 11 | iuneq2d 5025 |
. . . . . . . 8
β’ (π = (π / π
) β βͺ
π₯ β π£ (π₯(ballβπ)π ) = βͺ π₯ β π£ (π₯(ballβπ)(π / π
))) |
13 | 12 | eqeq1d 2734 |
. . . . . . 7
β’ (π = (π / π
) β (βͺ π₯ β π£ (π₯(ballβπ)π ) = π β βͺ
π₯ β π£ (π₯(ballβπ)(π / π
)) = π)) |
14 | 13 | rexbidv 3178 |
. . . . . 6
β’ (π = (π / π
) β (βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π ) = π β βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π)) |
15 | 14 | rspcv 3608 |
. . . . 5
β’ ((π / π
) β β+ β
(βπ β
β+ βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π ) = π β βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π)) |
16 | 5, 10, 15 | sylc 65 |
. . . 4
β’ ((π β§ π β β+) β
βπ£ β (π«
π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π) |
17 | | elfpw 9350 |
. . . . . . . . . . . . . 14
β’ (π£ β (π« π β© Fin) β (π£ β π β§ π£ β Fin)) |
18 | 17 | simplbi 498 |
. . . . . . . . . . . . 13
β’ (π£ β (π« π β© Fin) β π£ β π) |
19 | 18 | adantl 482 |
. . . . . . . . . . . 12
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β π£ β π) |
20 | 19 | sselda 3981 |
. . . . . . . . . . 11
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β π₯ β π) |
21 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(MetOpenβπ) =
(MetOpenβπ) |
22 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(MetOpenβπ) =
(MetOpenβπ) |
23 | 8 | simplbi 498 |
. . . . . . . . . . . . . . 15
β’ (π β (TotBndβπ) β π β (Metβπ)) |
24 | 6, 23 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β π β (Metβπ)) |
25 | | equivtotbnd.4 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ππ¦) β€ (π
Β· (π₯ππ¦))) |
26 | 21, 22, 1, 24, 3, 25 | metss2lem 24011 |
. . . . . . . . . . . . 13
β’ ((π β§ (π₯ β π β§ π β β+)) β (π₯(ballβπ)(π / π
)) β (π₯(ballβπ)π)) |
27 | 26 | anass1rs 653 |
. . . . . . . . . . . 12
β’ (((π β§ π β β+) β§ π₯ β π) β (π₯(ballβπ)(π / π
)) β (π₯(ballβπ)π)) |
28 | 27 | adantlr 713 |
. . . . . . . . . . 11
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π) β (π₯(ballβπ)(π / π
)) β (π₯(ballβπ)π)) |
29 | 20, 28 | syldan 591 |
. . . . . . . . . 10
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β (π₯(ballβπ)(π / π
)) β (π₯(ballβπ)π)) |
30 | 29 | ralrimiva 3146 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β
βπ₯ β π£ (π₯(ballβπ)(π / π
)) β (π₯(ballβπ)π)) |
31 | | ss2iun 5014 |
. . . . . . . . 9
β’
(βπ₯ β
π£ (π₯(ballβπ)(π / π
)) β (π₯(ballβπ)π) β βͺ
π₯ β π£ (π₯(ballβπ)(π / π
)) β βͺ π₯ β π£ (π₯(ballβπ)π)) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) β βͺ π₯ β π£ (π₯(ballβπ)π)) |
33 | | sseq1 4006 |
. . . . . . . 8
β’ (βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π β (βͺ
π₯ β π£ (π₯(ballβπ)(π / π
)) β βͺ π₯ β π£ (π₯(ballβπ)π) β π β βͺ
π₯ β π£ (π₯(ballβπ)π))) |
34 | 32, 33 | syl5ibcom 244 |
. . . . . . 7
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β (βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π β π β βͺ
π₯ β π£ (π₯(ballβπ)π))) |
35 | 1 | ad3antrrr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β π β (Metβπ)) |
36 | | metxmet 23831 |
. . . . . . . . . . 11
β’ (π β (Metβπ) β π β (βMetβπ)) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β π β (βMetβπ)) |
38 | | simpllr 774 |
. . . . . . . . . . 11
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β π β β+) |
39 | 38 | rpxrd 13013 |
. . . . . . . . . 10
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β π β β*) |
40 | | blssm 23915 |
. . . . . . . . . 10
β’ ((π β (βMetβπ) β§ π₯ β π β§ π β β*) β (π₯(ballβπ)π) β π) |
41 | 37, 20, 39, 40 | syl3anc 1371 |
. . . . . . . . 9
β’ ((((π β§ π β β+) β§ π£ β (π« π β© Fin)) β§ π₯ β π£) β (π₯(ballβπ)π) β π) |
42 | 41 | ralrimiva 3146 |
. . . . . . . 8
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β
βπ₯ β π£ (π₯(ballβπ)π) β π) |
43 | | iunss 5047 |
. . . . . . . 8
β’ (βͺ π₯ β π£ (π₯(ballβπ)π) β π β βπ₯ β π£ (π₯(ballβπ)π) β π) |
44 | 42, 43 | sylibr 233 |
. . . . . . 7
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β βͺ π₯ β π£ (π₯(ballβπ)π) β π) |
45 | 34, 44 | jctild 526 |
. . . . . 6
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β (βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π β (βͺ
π₯ β π£ (π₯(ballβπ)π) β π β§ π β βͺ
π₯ β π£ (π₯(ballβπ)π)))) |
46 | | eqss 3996 |
. . . . . 6
β’ (βͺ π₯ β π£ (π₯(ballβπ)π) = π β (βͺ
π₯ β π£ (π₯(ballβπ)π) β π β§ π β βͺ
π₯ β π£ (π₯(ballβπ)π))) |
47 | 45, 46 | syl6ibr 251 |
. . . . 5
β’ (((π β§ π β β+) β§ π£ β (π« π β© Fin)) β (βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π β βͺ
π₯ β π£ (π₯(ballβπ)π) = π)) |
48 | 47 | reximdva 3168 |
. . . 4
β’ ((π β§ π β β+) β
(βπ£ β (π«
π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)(π / π
)) = π β βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π) = π)) |
49 | 16, 48 | mpd 15 |
. . 3
β’ ((π β§ π β β+) β
βπ£ β (π«
π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π) = π) |
50 | 49 | ralrimiva 3146 |
. 2
β’ (π β βπ β β+ βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π) = π) |
51 | | istotbnd3 36627 |
. 2
β’ (π β (TotBndβπ) β (π β (Metβπ) β§ βπ β β+ βπ£ β (π« π β© Fin)βͺ π₯ β π£ (π₯(ballβπ)π) = π)) |
52 | 1, 50, 51 | sylanbrc 583 |
1
β’ (π β π β (TotBndβπ)) |