Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivtotbnd Structured version   Visualization version   GIF version

Theorem equivtotbnd 36634
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(π‘₯, 𝑦) ≀ 𝑅 Β· 𝑀(π‘₯, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivtotbnd.1 (πœ‘ β†’ 𝑀 ∈ (TotBndβ€˜π‘‹))
equivtotbnd.2 (πœ‘ β†’ 𝑁 ∈ (Metβ€˜π‘‹))
equivtotbnd.3 (πœ‘ β†’ 𝑅 ∈ ℝ+)
equivtotbnd.4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝑁𝑦) ≀ (𝑅 Β· (π‘₯𝑀𝑦)))
Assertion
Ref Expression
equivtotbnd (πœ‘ β†’ 𝑁 ∈ (TotBndβ€˜π‘‹))
Distinct variable groups:   π‘₯,𝑦,𝑀   π‘₯,𝑁,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝑅,𝑦

Proof of Theorem equivtotbnd
Dummy variables 𝑣 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivtotbnd.2 . 2 (πœ‘ β†’ 𝑁 ∈ (Metβ€˜π‘‹))
2 simpr 485 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ π‘Ÿ ∈ ℝ+)
3 equivtotbnd.3 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ ℝ+)
43adantr 481 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ 𝑅 ∈ ℝ+)
52, 4rpdivcld 13029 . . . . 5 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘Ÿ / 𝑅) ∈ ℝ+)
6 equivtotbnd.1 . . . . . . 7 (πœ‘ β†’ 𝑀 ∈ (TotBndβ€˜π‘‹))
76adantr 481 . . . . . 6 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ 𝑀 ∈ (TotBndβ€˜π‘‹))
8 istotbnd3 36627 . . . . . . 7 (𝑀 ∈ (TotBndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘  ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = 𝑋))
98simprbi 497 . . . . . 6 (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ βˆ€π‘  ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = 𝑋)
107, 9syl 17 . . . . 5 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ βˆ€π‘  ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = 𝑋)
11 oveq2 7413 . . . . . . . . 9 (𝑠 = (π‘Ÿ / 𝑅) β†’ (π‘₯(ballβ€˜π‘€)𝑠) = (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)))
1211iuneq2d 5025 . . . . . . . 8 (𝑠 = (π‘Ÿ / 𝑅) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)))
1312eqeq1d 2734 . . . . . . 7 (𝑠 = (π‘Ÿ / 𝑅) β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = 𝑋 ↔ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋))
1413rexbidv 3178 . . . . . 6 (𝑠 = (π‘Ÿ / 𝑅) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = 𝑋 ↔ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋))
1514rspcv 3608 . . . . 5 ((π‘Ÿ / 𝑅) ∈ ℝ+ β†’ (βˆ€π‘  ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑠) = 𝑋 β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋))
165, 10, 15sylc 65 . . . 4 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋)
17 elfpw 9350 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 βŠ† 𝑋 ∧ 𝑣 ∈ Fin))
1817simplbi 498 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ 𝑣 βŠ† 𝑋)
1918adantl 482 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ 𝑣 βŠ† 𝑋)
2019sselda 3981 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ π‘₯ ∈ 𝑋)
21 eqid 2732 . . . . . . . . . . . . . 14 (MetOpenβ€˜π‘) = (MetOpenβ€˜π‘)
22 eqid 2732 . . . . . . . . . . . . . 14 (MetOpenβ€˜π‘€) = (MetOpenβ€˜π‘€)
238simplbi 498 . . . . . . . . . . . . . . 15 (𝑀 ∈ (TotBndβ€˜π‘‹) β†’ 𝑀 ∈ (Metβ€˜π‘‹))
246, 23syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑀 ∈ (Metβ€˜π‘‹))
25 equivtotbnd.4 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝑁𝑦) ≀ (𝑅 Β· (π‘₯𝑀𝑦)))
2621, 22, 1, 24, 3, 25metss2lem 24011 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜π‘)π‘Ÿ))
2726anass1rs 653 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜π‘)π‘Ÿ))
2827adantlr 713 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜π‘)π‘Ÿ))
2920, 28syldan 591 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜π‘)π‘Ÿ))
3029ralrimiva 3146 . . . . . . . . 9 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜π‘)π‘Ÿ))
31 ss2iun 5014 . . . . . . . . 9 (βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜π‘)π‘Ÿ) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ))
3230, 31syl 17 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ))
33 sseq1 4006 . . . . . . . 8 (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋 β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) ↔ 𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ)))
3432, 33syl5ibcom 244 . . . . . . 7 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋 β†’ 𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ)))
351ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ 𝑁 ∈ (Metβ€˜π‘‹))
36 metxmet 23831 . . . . . . . . . . 11 (𝑁 ∈ (Metβ€˜π‘‹) β†’ 𝑁 ∈ (∞Metβ€˜π‘‹))
3735, 36syl 17 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ 𝑁 ∈ (∞Metβ€˜π‘‹))
38 simpllr 774 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ π‘Ÿ ∈ ℝ+)
3938rpxrd 13013 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ π‘Ÿ ∈ ℝ*)
40 blssm 23915 . . . . . . . . . 10 ((𝑁 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋)
4137, 20, 39, 40syl3anc 1371 . . . . . . . . 9 ((((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) ∧ π‘₯ ∈ 𝑣) β†’ (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋)
4241ralrimiva 3146 . . . . . . . 8 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋)
43 iunss 5047 . . . . . . . 8 (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋 ↔ βˆ€π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋)
4442, 43sylibr 233 . . . . . . 7 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋)
4534, 44jctild 526 . . . . . 6 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋 β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋 ∧ 𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ))))
46 eqss 3996 . . . . . 6 (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) = 𝑋 ↔ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) βŠ† 𝑋 ∧ 𝑋 βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ)))
4745, 46syl6ibr 251 . . . . 5 (((πœ‘ ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ (βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋 β†’ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) = 𝑋))
4847reximdva 3168 . . . 4 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)(π‘Ÿ / 𝑅)) = 𝑋 β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) = 𝑋))
4916, 48mpd 15 . . 3 ((πœ‘ ∧ π‘Ÿ ∈ ℝ+) β†’ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) = 𝑋)
5049ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) = 𝑋)
51 istotbnd3 36627 . 2 (𝑁 ∈ (TotBndβ€˜π‘‹) ↔ (𝑁 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘)π‘Ÿ) = 𝑋))
521, 50, 51sylanbrc 583 1 (πœ‘ β†’ 𝑁 ∈ (TotBndβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ ciun 4996   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935   Β· cmul 11111  β„*cxr 11243   ≀ cle 11245   / cdiv 11867  β„+crp 12970  βˆžMetcxmet 20921  Metcmet 20922  ballcbl 20923  MetOpencmopn 20926  TotBndctotbnd 36622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-rp 12971  df-xadd 13089  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-totbnd 36624
This theorem is referenced by:  equivbnd2  36648
  Copyright terms: Public domain W3C validator