Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd Structured version   Visualization version   GIF version

Theorem isbnd 35218
 Description: The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbnd (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6678 . 2 (𝑀 ∈ (Bnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6678 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 484 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑋 ∈ V)
4 fveq2 6645 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq1 2802 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
65rexbidv 3256 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
76raleqbi1dv 3356 . . . . . 6 (𝑦 = 𝑋 → (∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
84, 7rabeqbidv 3433 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})
9 df-bnd 35217 . . . . 5 Bnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)})
10 fvex 6658 . . . . . 6 (Met‘𝑋) ∈ V
1110rabex 5199 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ∈ V
128, 9, 11fvmpt 6745 . . . 4 (𝑋 ∈ V → (Bnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})
1312eleq2d 2875 . . 3 (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)}))
14 fveq2 6645 . . . . . . . 8 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1514oveqd 7152 . . . . . . 7 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑟) = (𝑥(ball‘𝑀)𝑟))
1615eqeq2d 2809 . . . . . 6 (𝑚 = 𝑀 → (𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1716rexbidv 3256 . . . . 5 (𝑚 = 𝑀 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1817ralbidv 3162 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1918elrab 3628 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2013, 19syl6bb 290 . 2 (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))))
211, 3, 20pm5.21nii 383 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3441  ‘cfv 6324  (class class class)co 7135  ℝ+crp 12377  Metcmet 20077  ballcbl 20078  Bndcbnd 35205 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-bnd 35217 This theorem is referenced by:  bndmet  35219  isbndx  35220  isbnd3  35222  bndss  35224  totbndbnd  35227
 Copyright terms: Public domain W3C validator