Step | Hyp | Ref
| Expression |
1 | | elfvex 6789 |
. 2
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑋 ∈ V) |
2 | | elfvex 6789 |
. . 3
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V) |
3 | 2 | adantr 480 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑋 ∈ V) |
4 | | fveq2 6756 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋)) |
5 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑚)𝑟))) |
6 | 5 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟))) |
7 | 6 | raleqbi1dv 3331 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (∀𝑥 ∈ 𝑦 ∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟))) |
8 | 4, 7 | rabeqbidv 3410 |
. . . . 5
⊢ (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥 ∈ 𝑦 ∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)}) |
9 | | df-bnd 35864 |
. . . . 5
⊢ Bnd =
(𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥 ∈ 𝑦 ∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)}) |
10 | | fvex 6769 |
. . . . . 6
⊢
(Met‘𝑋) ∈
V |
11 | 10 | rabex 5251 |
. . . . 5
⊢ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ∈ V |
12 | 8, 9, 11 | fvmpt 6857 |
. . . 4
⊢ (𝑋 ∈ V →
(Bnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)}) |
13 | 12 | eleq2d 2824 |
. . 3
⊢ (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})) |
14 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀)) |
15 | 14 | oveqd 7272 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑟) = (𝑥(ball‘𝑀)𝑟)) |
16 | 15 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
17 | 16 | rexbidv 3225 |
. . . . 5
⊢ (𝑚 = 𝑀 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
18 | 17 | ralbidv 3120 |
. . . 4
⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
19 | 18 | elrab 3617 |
. . 3
⊢ (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
20 | 13, 19 | bitrdi 286 |
. 2
⊢ (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))) |
21 | 1, 3, 20 | pm5.21nii 379 |
1
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |