Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd Structured version   Visualization version   GIF version

Theorem isbnd 35998
Description: The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbnd (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6844 . 2 (𝑀 ∈ (Bnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6844 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 481 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑋 ∈ V)
4 fveq2 6809 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq1 2741 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
65rexbidv 3172 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
76raleqbi1dv 3304 . . . . . 6 (𝑦 = 𝑋 → (∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
84, 7rabeqbidv 3419 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})
9 df-bnd 35997 . . . . 5 Bnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)})
10 fvex 6822 . . . . . 6 (Met‘𝑋) ∈ V
1110rabex 5269 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ∈ V
128, 9, 11fvmpt 6912 . . . 4 (𝑋 ∈ V → (Bnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})
1312eleq2d 2823 . . 3 (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)}))
14 fveq2 6809 . . . . . . . 8 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1514oveqd 7330 . . . . . . 7 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑟) = (𝑥(ball‘𝑀)𝑟))
1615eqeq2d 2748 . . . . . 6 (𝑚 = 𝑀 → (𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1716rexbidv 3172 . . . . 5 (𝑚 = 𝑀 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1817ralbidv 3171 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1918elrab 3633 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2013, 19bitrdi 286 . 2 (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))))
211, 3, 20pm5.21nii 379 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  wrex 3071  {crab 3404  Vcvv 3441  cfv 6463  (class class class)co 7313  +crp 12800  Metcmet 20654  ballcbl 20655  Bndcbnd 35985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-iota 6415  df-fun 6465  df-fv 6471  df-ov 7316  df-bnd 35997
This theorem is referenced by:  bndmet  35999  isbndx  36000  isbnd3  36002  bndss  36004  totbndbnd  36007
  Copyright terms: Public domain W3C validator