Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd Structured version   Visualization version   GIF version

Theorem isbnd 37826
Description: The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbnd (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6857 . 2 (𝑀 ∈ (Bnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6857 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑋 ∈ V)
4 fveq2 6822 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq1 2735 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
65rexbidv 3156 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
76raleqbi1dv 3304 . . . . . 6 (𝑦 = 𝑋 → (∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)))
84, 7rabeqbidv 3413 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})
9 df-bnd 37825 . . . . 5 Bnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑥𝑦𝑟 ∈ ℝ+ 𝑦 = (𝑥(ball‘𝑚)𝑟)})
10 fvex 6835 . . . . . 6 (Met‘𝑋) ∈ V
1110rabex 5277 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ∈ V
128, 9, 11fvmpt 6929 . . . 4 (𝑋 ∈ V → (Bnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)})
1312eleq2d 2817 . . 3 (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)}))
14 fveq2 6822 . . . . . . . 8 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1514oveqd 7363 . . . . . . 7 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑟) = (𝑥(ball‘𝑀)𝑟))
1615eqeq2d 2742 . . . . . 6 (𝑚 = 𝑀 → (𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1716rexbidv 3156 . . . . 5 (𝑚 = 𝑀 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1817ralbidv 3155 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
1918elrab 3647 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑚)𝑟)} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
2013, 19bitrdi 287 . 2 (𝑋 ∈ V → (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))))
211, 3, 20pm5.21nii 378 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cfv 6481  (class class class)co 7346  +crp 12890  Metcmet 21278  ballcbl 21279  Bndcbnd 37813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-bnd 37825
This theorem is referenced by:  bndmet  37827  isbndx  37828  isbnd3  37830  bndss  37832  totbndbnd  37835
  Copyright terms: Public domain W3C validator