Detailed syntax breakdown of Definition df-bnj18
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cR |
. . 3
class 𝑅 |
| 3 | | cX |
. . 3
class 𝑋 |
| 4 | 1, 2, 3 | c-bnj18 34708 |
. 2
class
trCl(𝑋, 𝐴, 𝑅) |
| 5 | | vf |
. . 3
setvar 𝑓 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 7 | | vn |
. . . . . . . 8
setvar 𝑛 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 9 | 6, 8 | wfn 6556 |
. . . . . 6
wff 𝑓 Fn 𝑛 |
| 10 | | c0 4333 |
. . . . . . . 8
class
∅ |
| 11 | 10, 6 | cfv 6561 |
. . . . . . 7
class (𝑓‘∅) |
| 12 | 1, 2, 3 | c-bnj14 34702 |
. . . . . . 7
class
pred(𝑋, 𝐴, 𝑅) |
| 13 | 11, 12 | wceq 1540 |
. . . . . 6
wff (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) |
| 14 | | vi |
. . . . . . . . . . 11
setvar 𝑖 |
| 15 | 14 | cv 1539 |
. . . . . . . . . 10
class 𝑖 |
| 16 | 15 | csuc 6386 |
. . . . . . . . 9
class suc 𝑖 |
| 17 | 16, 8 | wcel 2108 |
. . . . . . . 8
wff suc 𝑖 ∈ 𝑛 |
| 18 | 16, 6 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘suc 𝑖) |
| 19 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 20 | 15, 6 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑖) |
| 21 | 19 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 22 | 1, 2, 21 | c-bnj14 34702 |
. . . . . . . . . 10
class
pred(𝑦, 𝐴, 𝑅) |
| 23 | 19, 20, 22 | ciun 4991 |
. . . . . . . . 9
class ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| 24 | 18, 23 | wceq 1540 |
. . . . . . . 8
wff (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| 25 | 17, 24 | wi 4 |
. . . . . . 7
wff (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 26 | | com 7887 |
. . . . . . 7
class
ω |
| 27 | 25, 14, 26 | wral 3061 |
. . . . . 6
wff
∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 28 | 9, 13, 27 | w3a 1087 |
. . . . 5
wff (𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 29 | 10 | csn 4626 |
. . . . . 6
class
{∅} |
| 30 | 26, 29 | cdif 3948 |
. . . . 5
class (ω
∖ {∅}) |
| 31 | 28, 7, 30 | wrex 3070 |
. . . 4
wff
∃𝑛 ∈
(ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 32 | 31, 5 | cab 2714 |
. . 3
class {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} |
| 33 | 6 | cdm 5685 |
. . . 4
class dom 𝑓 |
| 34 | 14, 33, 20 | ciun 4991 |
. . 3
class ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
| 35 | 5, 32, 34 | ciun 4991 |
. 2
class ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
| 36 | 4, 35 | wceq 1540 |
1
wff trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |