Step | Hyp | Ref
| Expression |
1 | | df-bnj18 32653 |
. 2
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
2 | | df-iun 4931 |
. . 3
⊢ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) = {𝑤 ∣ ∃𝑓 ∈ 𝐵 𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)} |
3 | | df-iun 4931 |
. . . 4
⊢ ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)} |
4 | | bnj882.4 |
. . . . . . . . 9
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
5 | | bnj882.3 |
. . . . . . . . . . 11
⊢ 𝐷 = (ω ∖
{∅}) |
6 | | bnj882.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
7 | | bnj882.2 |
. . . . . . . . . . . . . 14
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
8 | 6, 7 | anbi12i 626 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) ↔ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
9 | 8 | anbi2i 622 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑛 ∧ (𝜑 ∧ 𝜓)) ↔ (𝑓 Fn 𝑛 ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
10 | | 3anass 1093 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ (𝜑 ∧ 𝜓))) |
11 | | 3anass 1093 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑓 Fn 𝑛 ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
12 | 9, 10, 11 | 3bitr4i 302 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
13 | 5, 12 | rexeqbii 3257 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
14 | 13 | abbii 2809 |
. . . . . . . . 9
⊢ {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} |
15 | 4, 14 | eqtri 2767 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} |
16 | 15 | eleq2i 2831 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐵 ↔ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}) |
17 | 16 | anbi1i 623 |
. . . . . 6
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) ↔ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖))) |
18 | 17 | rexbii2 3177 |
. . . . 5
⊢
(∃𝑓 ∈
𝐵 𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
19 | 18 | abbii 2809 |
. . . 4
⊢ {𝑤 ∣ ∃𝑓 ∈ 𝐵 𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)} = {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)} |
20 | 3, 19 | eqtr4i 2770 |
. . 3
⊢ ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) = {𝑤 ∣ ∃𝑓 ∈ 𝐵 𝑤 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)} |
21 | 2, 20 | eqtr4i 2770 |
. 2
⊢ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) = ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
22 | 1, 21 | eqtr4i 2770 |
1
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |