Detailed syntax breakdown of Definition df-cau
| Step | Hyp | Ref
| Expression |
| 1 | | ccau 25287 |
. 2
class
Cau |
| 2 | | vd |
. . 3
setvar 𝑑 |
| 3 | | cxmet 21349 |
. . . . 5
class
∞Met |
| 4 | 3 | crn 5686 |
. . . 4
class ran
∞Met |
| 5 | 4 | cuni 4907 |
. . 3
class ∪ ran ∞Met |
| 6 | | vj |
. . . . . . . . 9
setvar 𝑗 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑗 |
| 8 | | cuz 12878 |
. . . . . . . 8
class
ℤ≥ |
| 9 | 7, 8 | cfv 6561 |
. . . . . . 7
class
(ℤ≥‘𝑗) |
| 10 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 12 | 7, 11 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑗) |
| 13 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 15 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑑 |
| 16 | | cbl 21351 |
. . . . . . . . 9
class
ball |
| 17 | 15, 16 | cfv 6561 |
. . . . . . . 8
class
(ball‘𝑑) |
| 18 | 12, 14, 17 | co 7431 |
. . . . . . 7
class ((𝑓‘𝑗)(ball‘𝑑)𝑥) |
| 19 | 11, 9 | cres 5687 |
. . . . . . 7
class (𝑓 ↾
(ℤ≥‘𝑗)) |
| 20 | 9, 18, 19 | wf 6557 |
. . . . . 6
wff (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥) |
| 21 | | cz 12613 |
. . . . . 6
class
ℤ |
| 22 | 20, 6, 21 | wrex 3070 |
. . . . 5
wff
∃𝑗 ∈
ℤ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥) |
| 23 | | crp 13034 |
. . . . 5
class
ℝ+ |
| 24 | 22, 13, 23 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥) |
| 25 | 15 | cdm 5685 |
. . . . . 6
class dom 𝑑 |
| 26 | 25 | cdm 5685 |
. . . . 5
class dom dom
𝑑 |
| 27 | | cc 11153 |
. . . . 5
class
ℂ |
| 28 | | cpm 8867 |
. . . . 5
class
↑pm |
| 29 | 26, 27, 28 | co 7431 |
. . . 4
class (dom dom
𝑑 ↑pm
ℂ) |
| 30 | 24, 10, 29 | crab 3436 |
. . 3
class {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ)
∣ ∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)} |
| 31 | 2, 5, 30 | cmpt 5225 |
. 2
class (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)}) |
| 32 | 1, 31 | wceq 1540 |
1
wff Cau =
(𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)}) |