Step | Hyp | Ref
| Expression |
1 | | df-cau 24408 |
. 2
⊢ Cau =
(𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝑑)𝑥)}) |
2 | | dmeq 5806 |
. . . . . 6
⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) |
3 | 2 | dmeqd 5808 |
. . . . 5
⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
4 | | xmetf 23470 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
5 | 4 | fdmd 6604 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
6 | 5 | dmeqd 5808 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
7 | | dmxpid 5833 |
. . . . . 6
⊢ dom
(𝑋 × 𝑋) = 𝑋 |
8 | 6, 7 | eqtrdi 2794 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋) |
9 | 3, 8 | sylan9eqr 2800 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋) |
10 | 9 | oveq1d 7283 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 ↑pm ℂ) = (𝑋 ↑pm
ℂ)) |
11 | | simpr 485 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
12 | 11 | fveq2d 6771 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (ball‘𝑑) = (ball‘𝐷)) |
13 | 12 | oveqd 7285 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓‘𝑘)(ball‘𝑑)𝑥) = ((𝑓‘𝑘)(ball‘𝐷)𝑥)) |
14 | 13 | feq3d 6580 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝑑)𝑥) ↔ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥))) |
15 | 14 | rexbidv 3224 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝑑)𝑥) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥))) |
16 | 15 | ralbidv 3108 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝑑)𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥))) |
17 | 10, 16 | rabeqbidv 3418 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝑑)𝑥)} = {𝑓 ∈ (𝑋 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)}) |
18 | | fvssunirn 6796 |
. . 3
⊢
(∞Met‘𝑋)
⊆ ∪ ran ∞Met |
19 | 18 | sseli 3917 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ∪ ran
∞Met) |
20 | | ovex 7301 |
. . . 4
⊢ (𝑋 ↑pm ℂ)
∈ V |
21 | 20 | rabex 5255 |
. . 3
⊢ {𝑓 ∈ (𝑋 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)} ∈ V |
22 | 21 | a1i 11 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (𝑋 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)} ∈ V) |
23 | 1, 17, 19, 22 | fvmptd2 6876 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋 ↑pm ℂ) ∣
∀𝑥 ∈
ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)}) |