MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caufval Structured version   Visualization version   GIF version

Theorem caufval 25182
Description: The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
caufval (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
Distinct variable groups:   𝑓,𝑘,𝑥,𝐷   𝑓,𝑋,𝑘,𝑥

Proof of Theorem caufval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-cau 25163 . 2 Cau = (𝑑 ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)})
2 dmeq 5870 . . . . . 6 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
32dmeqd 5872 . . . . 5 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
4 xmetf 24224 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
54fdmd 6701 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
65dmeqd 5872 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
7 dmxpid 5897 . . . . . 6 dom (𝑋 × 𝑋) = 𝑋
86, 7eqtrdi 2781 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
93, 8sylan9eqr 2787 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
109oveq1d 7405 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑pm ℂ) = (𝑋pm ℂ))
11 simpr 484 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1211fveq2d 6865 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (ball‘𝑑) = (ball‘𝐷))
1312oveqd 7407 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓𝑘)(ball‘𝑑)𝑥) = ((𝑓𝑘)(ball‘𝐷)𝑥))
1413feq3d 6676 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1514rexbidv 3158 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1615ralbidv 3157 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1710, 16rabeqbidv 3427 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)} = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
18 fvssunirn 6894 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
1918sseli 3945 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
20 ovex 7423 . . . 4 (𝑋pm ℂ) ∈ V
2120rabex 5297 . . 3 {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ∈ V
2221a1i 11 . 2 (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ∈ V)
231, 17, 19, 22fvmptd2 6979 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450   cuni 4874   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  *cxr 11214  cz 12536  cuz 12800  +crp 12958  ∞Metcxmet 21256  ballcbl 21258  Cauccau 25160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-xr 11219  df-xmet 21264  df-cau 25163
This theorem is referenced by:  iscau  25183  equivcau  25207
  Copyright terms: Public domain W3C validator