MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caufval Structured version   Visualization version   GIF version

Theorem caufval 24427
Description: The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
caufval (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
Distinct variable groups:   𝑓,𝑘,𝑥,𝐷   𝑓,𝑋,𝑘,𝑥

Proof of Theorem caufval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-cau 24408 . 2 Cau = (𝑑 ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)})
2 dmeq 5806 . . . . . 6 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
32dmeqd 5808 . . . . 5 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
4 xmetf 23470 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
54fdmd 6604 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
65dmeqd 5808 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
7 dmxpid 5833 . . . . . 6 dom (𝑋 × 𝑋) = 𝑋
86, 7eqtrdi 2794 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
93, 8sylan9eqr 2800 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
109oveq1d 7283 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑pm ℂ) = (𝑋pm ℂ))
11 simpr 485 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1211fveq2d 6771 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (ball‘𝑑) = (ball‘𝐷))
1312oveqd 7285 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓𝑘)(ball‘𝑑)𝑥) = ((𝑓𝑘)(ball‘𝐷)𝑥))
1413feq3d 6580 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1514rexbidv 3224 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1615ralbidv 3108 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)))
1710, 16rabeqbidv 3418 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝑑)𝑥)} = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
18 fvssunirn 6796 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
1918sseli 3917 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
20 ovex 7301 . . . 4 (𝑋pm ℂ) ∈ V
2120rabex 5255 . . 3 {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ∈ V
2221a1i 11 . 2 (𝐷 ∈ (∞Met‘𝑋) → {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)} ∈ V)
231, 17, 19, 22fvmptd2 6876 1 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3430   cuni 4840   × cxp 5583  dom cdm 5585  ran crn 5586  cres 5587  wf 6423  cfv 6427  (class class class)co 7268  pm cpm 8604  cc 10857  *cxr 10996  cz 12307  cuz 12570  +crp 12718  ∞Metcxmet 20570  ballcbl 20572  Cauccau 24405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8605  df-xr 11001  df-xmet 20578  df-cau 24408
This theorem is referenced by:  iscau  24428  equivcau  24452
  Copyright terms: Public domain W3C validator