Detailed syntax breakdown of Definition df-cfil
| Step | Hyp | Ref
| Expression |
| 1 | | ccfil 25202 |
. 2
class
CauFil |
| 2 | | vd |
. . 3
setvar 𝑑 |
| 3 | | cxmet 21298 |
. . . . 5
class
∞Met |
| 4 | 3 | crn 5655 |
. . . 4
class ran
∞Met |
| 5 | 4 | cuni 4883 |
. . 3
class ∪ ran ∞Met |
| 6 | 2 | cv 1539 |
. . . . . . . 8
class 𝑑 |
| 7 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 8 | 7 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 9 | 8, 8 | cxp 5652 |
. . . . . . . 8
class (𝑦 × 𝑦) |
| 10 | 6, 9 | cima 5657 |
. . . . . . 7
class (𝑑 “ (𝑦 × 𝑦)) |
| 11 | | cc0 11127 |
. . . . . . . 8
class
0 |
| 12 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 13 | 12 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 14 | | cico 13362 |
. . . . . . . 8
class
[,) |
| 15 | 11, 13, 14 | co 7403 |
. . . . . . 7
class
(0[,)𝑥) |
| 16 | 10, 15 | wss 3926 |
. . . . . 6
wff (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
| 17 | | vf |
. . . . . . 7
setvar 𝑓 |
| 18 | 17 | cv 1539 |
. . . . . 6
class 𝑓 |
| 19 | 16, 7, 18 | wrex 3060 |
. . . . 5
wff
∃𝑦 ∈
𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
| 20 | | crp 13006 |
. . . . 5
class
ℝ+ |
| 21 | 19, 12, 20 | wral 3051 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
| 22 | 6 | cdm 5654 |
. . . . . 6
class dom 𝑑 |
| 23 | 22 | cdm 5654 |
. . . . 5
class dom dom
𝑑 |
| 24 | | cfil 23781 |
. . . . 5
class
Fil |
| 25 | 23, 24 | cfv 6530 |
. . . 4
class
(Fil‘dom dom 𝑑) |
| 26 | 21, 17, 25 | crab 3415 |
. . 3
class {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} |
| 27 | 2, 5, 26 | cmpt 5201 |
. 2
class (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| 28 | 1, 27 | wceq 1540 |
1
wff CauFil =
(𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |