Detailed syntax breakdown of Definition df-cfil
Step | Hyp | Ref
| Expression |
1 | | ccfil 24321 |
. 2
class
CauFil |
2 | | vd |
. . 3
setvar 𝑑 |
3 | | cxmet 20495 |
. . . . 5
class
∞Met |
4 | 3 | crn 5581 |
. . . 4
class ran
∞Met |
5 | 4 | cuni 4836 |
. . 3
class ∪ ran ∞Met |
6 | 2 | cv 1538 |
. . . . . . . 8
class 𝑑 |
7 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
8 | 7 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
9 | 8, 8 | cxp 5578 |
. . . . . . . 8
class (𝑦 × 𝑦) |
10 | 6, 9 | cima 5583 |
. . . . . . 7
class (𝑑 “ (𝑦 × 𝑦)) |
11 | | cc0 10802 |
. . . . . . . 8
class
0 |
12 | | vx |
. . . . . . . . 9
setvar 𝑥 |
13 | 12 | cv 1538 |
. . . . . . . 8
class 𝑥 |
14 | | cico 13010 |
. . . . . . . 8
class
[,) |
15 | 11, 13, 14 | co 7255 |
. . . . . . 7
class
(0[,)𝑥) |
16 | 10, 15 | wss 3883 |
. . . . . 6
wff (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
17 | | vf |
. . . . . . 7
setvar 𝑓 |
18 | 17 | cv 1538 |
. . . . . 6
class 𝑓 |
19 | 16, 7, 18 | wrex 3064 |
. . . . 5
wff
∃𝑦 ∈
𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
20 | | crp 12659 |
. . . . 5
class
ℝ+ |
21 | 19, 12, 20 | wral 3063 |
. . . 4
wff
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
22 | 6 | cdm 5580 |
. . . . . 6
class dom 𝑑 |
23 | 22 | cdm 5580 |
. . . . 5
class dom dom
𝑑 |
24 | | cfil 22904 |
. . . . 5
class
Fil |
25 | 23, 24 | cfv 6418 |
. . . 4
class
(Fil‘dom dom 𝑑) |
26 | 21, 17, 25 | crab 3067 |
. . 3
class {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)} |
27 | 2, 5, 26 | cmpt 5153 |
. 2
class (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
28 | 1, 27 | wceq 1539 |
1
wff CauFil =
(𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |