Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-chp | Structured version Visualization version GIF version |
Description: Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than 𝑥, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
df-chp | ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchp 26147 | . 2 class ψ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cr 10801 | . . 3 class ℝ | |
4 | c1 10803 | . . . . 5 class 1 | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | cfl 13438 | . . . . . 6 class ⌊ | |
7 | 5, 6 | cfv 6418 | . . . . 5 class (⌊‘𝑥) |
8 | cfz 13168 | . . . . 5 class ... | |
9 | 4, 7, 8 | co 7255 | . . . 4 class (1...(⌊‘𝑥)) |
10 | vn | . . . . . 6 setvar 𝑛 | |
11 | 10 | cv 1538 | . . . . 5 class 𝑛 |
12 | cvma 26146 | . . . . 5 class Λ | |
13 | 11, 12 | cfv 6418 | . . . 4 class (Λ‘𝑛) |
14 | 9, 13, 10 | csu 15325 | . . 3 class Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) |
15 | 2, 3, 14 | cmpt 5153 | . 2 class (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
16 | 1, 15 | wceq 1539 | 1 wff ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
Colors of variables: wff setvar class |
This definition is referenced by: chpval 26176 chpf 26177 |
Copyright terms: Public domain | W3C validator |