| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-chp | Structured version Visualization version GIF version | ||
| Description: Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than 𝑥, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| Ref | Expression |
|---|---|
| df-chp | ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cchp 27136 | . 2 class ψ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cr 11154 | . . 3 class ℝ | |
| 4 | c1 11156 | . . . . 5 class 1 | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | cfl 13830 | . . . . . 6 class ⌊ | |
| 7 | 5, 6 | cfv 6561 | . . . . 5 class (⌊‘𝑥) |
| 8 | cfz 13547 | . . . . 5 class ... | |
| 9 | 4, 7, 8 | co 7431 | . . . 4 class (1...(⌊‘𝑥)) |
| 10 | vn | . . . . . 6 setvar 𝑛 | |
| 11 | 10 | cv 1539 | . . . . 5 class 𝑛 |
| 12 | cvma 27135 | . . . . 5 class Λ | |
| 13 | 11, 12 | cfv 6561 | . . . 4 class (Λ‘𝑛) |
| 14 | 9, 13, 10 | csu 15722 | . . 3 class Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) |
| 15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
| 16 | 1, 15 | wceq 1540 | 1 wff ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: chpval 27165 chpf 27166 |
| Copyright terms: Public domain | W3C validator |