| Metamath
Proof Explorer Theorem List (p. 269 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-acos 26801 | Define the arccosine function. See also remarks for df-asin 26800. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | ||
| Definition | df-atan 26802 | Define the arctangent function. See also remarks for df-asin 26800. Unlike arcsin and arccos, this function is not defined everywhere, because tan(𝑧) ≠ ±i for all 𝑧 ∈ ℂ. For all other 𝑧, there is a formula for arctan(𝑧) in terms of log, and we take that as the definition. Branch points are at ±i; branch cuts are on the pure imaginary axis not between -i and i, which is to say {𝑧 ∈ ℂ ∣ (i · 𝑧) ∈ (-∞, -1) ∪ (1, +∞)}. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | ||
| Theorem | asinlem 26803 | The argument to the logarithm in df-asin 26800 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | ||
| Theorem | asinlem2 26804 | The argument to the logarithm in df-asin 26800 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1) | ||
| Theorem | asinlem3a 26805 | Lemma for asinlem3 26806. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinlem3 26806 | The argument to the logarithm in df-asin 26800 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinf 26807 | Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin:ℂ⟶ℂ | ||
| Theorem | asincl 26808 | Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | ||
| Theorem | acosf 26809 | Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos:ℂ⟶ℂ | ||
| Theorem | acoscl 26810 | Closure for the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) ∈ ℂ) | ||
| Theorem | atandm 26811 | Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | ||
| Theorem | atandm2 26812 | This form of atandm 26811 is a bit more useful for showing that the logarithms in df-atan 26802 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | ||
| Theorem | atandm3 26813 | A compact form of atandm 26811. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | ||
| Theorem | atandm4 26814 | A compact form of atandm 26811. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) | ||
| Theorem | atanf 26815 | Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan:(ℂ ∖ {-i, i})⟶ℂ | ||
| Theorem | atancl 26816 | Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ) | ||
| Theorem | asinval 26817 | Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | ||
| Theorem | acosval 26818 | Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) | ||
| Theorem | atanval 26819 | Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) | ||
| Theorem | atanre 26820 | A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | ||
| Theorem | asinneg 26821 | The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | ||
| Theorem | acosneg 26822 | The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘-𝐴) = (π − (arccos‘𝐴))) | ||
| Theorem | efiasin 26823 | The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | ||
| Theorem | sinasin 26824 | The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 26827 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) | ||
| Theorem | cosacos 26825 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(arccos‘𝐴)) = 𝐴) | ||
| Theorem | asinsinlem 26826 | Lemma for asinsin 26827. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴)))) | ||
| Theorem | asinsin 26827 | The arcsine function composed with sin is equal to the identity. This plus sinasin 26824 allow to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 26831). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
| Theorem | acoscos 26828 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴) | ||
| Theorem | asin1 26829 | The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arcsin‘1) = (π / 2) | ||
| Theorem | acos1 26830 | The arccosine of 1 is 0. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arccos‘1) = 0 | ||
| Theorem | reasinsin 26831 | The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
| Theorem | asinsinb 26832 | Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arcsin‘𝐴) = 𝐵 ↔ (sin‘𝐵) = 𝐴)) | ||
| Theorem | acoscosb 26833 | Relationship between cosine and arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (0(,)π)) → ((arccos‘𝐴) = 𝐵 ↔ (cos‘𝐵) = 𝐴)) | ||
| Theorem | asinbnd 26834 | The arcsine function has range within a vertical strip of the complex plane with real part between -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | acosbnd 26835 | The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) | ||
| Theorem | asinrebnd 26836 | Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | asinrecl 26837 | The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ ℝ) | ||
| Theorem | acosrecl 26838 | The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arccos‘𝐴) ∈ ℝ) | ||
| Theorem | cosasin 26839 | The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
| Theorem | sinacos 26840 | The sine of the arccosine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(arccos‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
| Theorem | atandmneg 26841 | The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | ||
| Theorem | atanneg 26842 | The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | ||
| Theorem | atan0 26843 | The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (arctan‘0) = 0 | ||
| Theorem | atandmcj 26844 | The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) | ||
| Theorem | atancj 26845 | The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26842 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))) | ||
| Theorem | atanrecl 26846 | The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | ||
| Theorem | efiatan 26847 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴))))) | ||
| Theorem | atanlogaddlem 26848 | Lemma for atanlogadd 26849. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | atanlogadd 26849 | The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | atanlogsublem 26850 | Lemma for atanlogsub 26851. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π)) | ||
| Theorem | atanlogsub 26851 | A variation on atanlogadd 26849, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | efiatan2 26852 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) | ||
| Theorem | 2efiatan 26853 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1)) | ||
| Theorem | tanatan 26854 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴) | ||
| Theorem | atandmtan 26855 | The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) | ||
| Theorem | cosatan 26856 | The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2))))) | ||
| Theorem | cosatanne0 26857 | The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) ≠ 0) | ||
| Theorem | atantan 26858 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴) | ||
| Theorem | atantanb 26859 | Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arctan‘𝐴) = 𝐵 ↔ (tan‘𝐵) = 𝐴)) | ||
| Theorem | atanbndlem 26860 | Lemma for atanbnd 26861. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | atanbnd 26861 | The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | atanord 26862 | The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (arctan‘𝐴) < (arctan‘𝐵))) | ||
| Theorem | atan1 26863 | The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arctan‘1) = (π / 4) | ||
| Theorem | bndatandm 26864 | A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | ||
| Theorem | atans 26865* | The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) | ||
| Theorem | atans2 26866* | It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)) | ||
| Theorem | atansopn 26867* | The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ∈ (TopOpen‘ℂfld) | ||
| Theorem | atansssdm 26868* | The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ⊆ dom arctan | ||
| Theorem | ressatans 26869* | The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ ℝ ⊆ 𝑆 | ||
| Theorem | dvatan 26870* | The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (ℂ D (arctan ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) | ||
| Theorem | atancn 26871* | The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (arctan ↾ 𝑆) ∈ (𝑆–cn→ℂ) | ||
| Theorem | atantayl 26872* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴↑𝑛) / 𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | atantayl2 26873* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴↑𝑛) / 𝑛)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | atantayl3 26874* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | leibpilem1 26875 | Lemma for leibpi 26877. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | leibpilem2 26876* | The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) & ⊢ 𝐴 ∈ V ⇒ ⊢ (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) | ||
| Theorem | leibpi 26877 | The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15589). (2) Using leibpilem2 26876 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 26873). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 26873, Abel's theorem (abelth2 26377) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 26871) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (π / 4) | ||
| Theorem | leibpisum 26878 | The Leibniz formula for π. This version of leibpi 26877 looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) | ||
| Theorem | log2cnv 26879 | Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (log‘2) | ||
| Theorem | log2tlbnd 26880* | Bound the error term in the series of log2cnv 26879. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))) | ||
| Theorem | log2ublem1 26881 | Lemma for log2ub 26884. The proof of log2ub 26884, which is simply the evaluation of log2tlbnd 26880 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 & ⊢ 𝐴 ∈ ℝ & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 | ||
| Theorem | log2ublem2 26882* | Lemma for log2ub 26884. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵) & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 − 1) = 𝐾 & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 𝑁) = 3 & ⊢ ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺) | ||
| Theorem | log2ublem3 26883 | Lemma for log2ub 26884. In decimal, this is a proof that the first four terms of the series for log2 is less than 53056 / 76545. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ ;;;;53056 | ||
| Theorem | log2ub 26884 | log2 is less than 253 / 365. If written in decimal, this is because log2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ (log‘2) < (;;253 / ;;365) | ||
| Theorem | log2le1 26885 | log2 is less than 1. This is just a weaker form of log2ub 26884 when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ (log‘2) < 1 | ||
| Theorem | birthdaylem1 26886* | Lemma for birthday 26889. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) | ||
| Theorem | birthdaylem2 26887* | For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) | ||
| Theorem | birthdaylem3 26888* | For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))) | ||
| Theorem | birthday 26889* | The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} & ⊢ 𝐾 = ;23 & ⊢ 𝑁 = ;;365 ⇒ ⊢ ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2) | ||
| Syntax | carea 26890 | Area of regions in the complex plane. |
| class area | ||
| Definition | df-area 26891* | Define the area of a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
| Theorem | dmarea 26892* | The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) | ||
| Theorem | areambl 26893 | The fibers of a measurable region are finitely measurable subsets of ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) | ||
| Theorem | areass 26894 | A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) | ||
| Theorem | dfarea 26895* | Rewrite df-area 26891 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
| Theorem | areaf 26896 | Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area:dom area⟶(0[,)+∞) | ||
| Theorem | areacl 26897 | The area of a measurable region is a real number. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → (area‘𝑆) ∈ ℝ) | ||
| Theorem | areage0 26898 | The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → 0 ≤ (area‘𝑆)) | ||
| Theorem | areaval 26899* | The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥) | ||
| Theorem | rlimcnp 26900* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) & ⊢ (𝜑 → 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ+) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) & ⊢ (𝑥 = 0 → 𝑅 = 𝐶) & ⊢ (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |