| Metamath
Proof Explorer Theorem List (p. 269 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cacos 26801 | The arccosine function. |
| class arccos | ||
| Syntax | catan 26802 | The arctangent function. |
| class arctan | ||
| Definition | df-asin 26803 | Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ◡sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log, which we already know is total (except at 0). There are branch points at -1 and 1 (at which the function is defined), and branch cuts along the real line not between -1 and 1, which is to say (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | ||
| Definition | df-acos 26804 | Define the arccosine function. See also remarks for df-asin 26803. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | ||
| Definition | df-atan 26805 | Define the arctangent function. See also remarks for df-asin 26803. Unlike arcsin and arccos, this function is not defined everywhere, because tan(𝑧) ≠ ±i for all 𝑧 ∈ ℂ. For all other 𝑧, there is a formula for arctan(𝑧) in terms of log, and we take that as the definition. Branch points are at ±i; branch cuts are on the pure imaginary axis not between -i and i, which is to say {𝑧 ∈ ℂ ∣ (i · 𝑧) ∈ (-∞, -1) ∪ (1, +∞)}. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | ||
| Theorem | asinlem 26806 | The argument to the logarithm in df-asin 26803 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | ||
| Theorem | asinlem2 26807 | The argument to the logarithm in df-asin 26803 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1) | ||
| Theorem | asinlem3a 26808 | Lemma for asinlem3 26809. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinlem3 26809 | The argument to the logarithm in df-asin 26803 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinf 26810 | Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin:ℂ⟶ℂ | ||
| Theorem | asincl 26811 | Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | ||
| Theorem | acosf 26812 | Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos:ℂ⟶ℂ | ||
| Theorem | acoscl 26813 | Closure for the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) ∈ ℂ) | ||
| Theorem | atandm 26814 | Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | ||
| Theorem | atandm2 26815 | This form of atandm 26814 is a bit more useful for showing that the logarithms in df-atan 26805 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | ||
| Theorem | atandm3 26816 | A compact form of atandm 26814. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | ||
| Theorem | atandm4 26817 | A compact form of atandm 26814. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) | ||
| Theorem | atanf 26818 | Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan:(ℂ ∖ {-i, i})⟶ℂ | ||
| Theorem | atancl 26819 | Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ) | ||
| Theorem | asinval 26820 | Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | ||
| Theorem | acosval 26821 | Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) | ||
| Theorem | atanval 26822 | Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) | ||
| Theorem | atanre 26823 | A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | ||
| Theorem | asinneg 26824 | The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | ||
| Theorem | acosneg 26825 | The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘-𝐴) = (π − (arccos‘𝐴))) | ||
| Theorem | efiasin 26826 | The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | ||
| Theorem | sinasin 26827 | The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 26830 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) | ||
| Theorem | cosacos 26828 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(arccos‘𝐴)) = 𝐴) | ||
| Theorem | asinsinlem 26829 | Lemma for asinsin 26830. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴)))) | ||
| Theorem | asinsin 26830 | The arcsine function composed with sin is equal to the identity. This plus sinasin 26827 allow to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 26834). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
| Theorem | acoscos 26831 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴) | ||
| Theorem | asin1 26832 | The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arcsin‘1) = (π / 2) | ||
| Theorem | acos1 26833 | The arccosine of 1 is 0. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arccos‘1) = 0 | ||
| Theorem | reasinsin 26834 | The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
| Theorem | asinsinb 26835 | Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arcsin‘𝐴) = 𝐵 ↔ (sin‘𝐵) = 𝐴)) | ||
| Theorem | acoscosb 26836 | Relationship between cosine and arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (0(,)π)) → ((arccos‘𝐴) = 𝐵 ↔ (cos‘𝐵) = 𝐴)) | ||
| Theorem | asinbnd 26837 | The arcsine function has range within a vertical strip of the complex plane with real part between -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | acosbnd 26838 | The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) | ||
| Theorem | asinrebnd 26839 | Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | asinrecl 26840 | The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ ℝ) | ||
| Theorem | acosrecl 26841 | The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arccos‘𝐴) ∈ ℝ) | ||
| Theorem | cosasin 26842 | The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
| Theorem | sinacos 26843 | The sine of the arccosine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(arccos‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
| Theorem | atandmneg 26844 | The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | ||
| Theorem | atanneg 26845 | The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | ||
| Theorem | atan0 26846 | The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (arctan‘0) = 0 | ||
| Theorem | atandmcj 26847 | The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) | ||
| Theorem | atancj 26848 | The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26845 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))) | ||
| Theorem | atanrecl 26849 | The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | ||
| Theorem | efiatan 26850 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴))))) | ||
| Theorem | atanlogaddlem 26851 | Lemma for atanlogadd 26852. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | atanlogadd 26852 | The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | atanlogsublem 26853 | Lemma for atanlogsub 26854. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π)) | ||
| Theorem | atanlogsub 26854 | A variation on atanlogadd 26852, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | efiatan2 26855 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) | ||
| Theorem | 2efiatan 26856 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1)) | ||
| Theorem | tanatan 26857 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴) | ||
| Theorem | atandmtan 26858 | The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) | ||
| Theorem | cosatan 26859 | The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2))))) | ||
| Theorem | cosatanne0 26860 | The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) ≠ 0) | ||
| Theorem | atantan 26861 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴) | ||
| Theorem | atantanb 26862 | Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arctan‘𝐴) = 𝐵 ↔ (tan‘𝐵) = 𝐴)) | ||
| Theorem | atanbndlem 26863 | Lemma for atanbnd 26864. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | atanbnd 26864 | The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | atanord 26865 | The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (arctan‘𝐴) < (arctan‘𝐵))) | ||
| Theorem | atan1 26866 | The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arctan‘1) = (π / 4) | ||
| Theorem | bndatandm 26867 | A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | ||
| Theorem | atans 26868* | The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) | ||
| Theorem | atans2 26869* | It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)) | ||
| Theorem | atansopn 26870* | The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ∈ (TopOpen‘ℂfld) | ||
| Theorem | atansssdm 26871* | The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ⊆ dom arctan | ||
| Theorem | ressatans 26872* | The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ ℝ ⊆ 𝑆 | ||
| Theorem | dvatan 26873* | The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (ℂ D (arctan ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) | ||
| Theorem | atancn 26874* | The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (arctan ↾ 𝑆) ∈ (𝑆–cn→ℂ) | ||
| Theorem | atantayl 26875* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴↑𝑛) / 𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | atantayl2 26876* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴↑𝑛) / 𝑛)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | atantayl3 26877* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | leibpilem1 26878 | Lemma for leibpi 26880. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | leibpilem2 26879* | The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) & ⊢ 𝐴 ∈ V ⇒ ⊢ (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) | ||
| Theorem | leibpi 26880 | The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15594). (2) Using leibpilem2 26879 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 26876). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 26876, Abel's theorem (abelth2 26380) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 26874) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (π / 4) | ||
| Theorem | leibpisum 26881 | The Leibniz formula for π. This version of leibpi 26880 looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) | ||
| Theorem | log2cnv 26882 | Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (log‘2) | ||
| Theorem | log2tlbnd 26883* | Bound the error term in the series of log2cnv 26882. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))) | ||
| Theorem | log2ublem1 26884 | Lemma for log2ub 26887. The proof of log2ub 26887, which is simply the evaluation of log2tlbnd 26883 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 & ⊢ 𝐴 ∈ ℝ & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 | ||
| Theorem | log2ublem2 26885* | Lemma for log2ub 26887. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵) & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 − 1) = 𝐾 & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 𝑁) = 3 & ⊢ ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺) | ||
| Theorem | log2ublem3 26886 | Lemma for log2ub 26887. In decimal, this is a proof that the first four terms of the series for log2 is less than 53056 / 76545. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ ;;;;53056 | ||
| Theorem | log2ub 26887 | log2 is less than 253 / 365. If written in decimal, this is because log2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ (log‘2) < (;;253 / ;;365) | ||
| Theorem | log2le1 26888 | log2 is less than 1. This is just a weaker form of log2ub 26887 when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ (log‘2) < 1 | ||
| Theorem | birthdaylem1 26889* | Lemma for birthday 26892. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) | ||
| Theorem | birthdaylem2 26890* | For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) | ||
| Theorem | birthdaylem3 26891* | For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))) | ||
| Theorem | birthday 26892* | The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} & ⊢ 𝐾 = ;23 & ⊢ 𝑁 = ;;365 ⇒ ⊢ ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2) | ||
| Syntax | carea 26893 | Area of regions in the complex plane. |
| class area | ||
| Definition | df-area 26894* | Define the area of a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
| Theorem | dmarea 26895* | The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) | ||
| Theorem | areambl 26896 | The fibers of a measurable region are finitely measurable subsets of ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) | ||
| Theorem | areass 26897 | A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) | ||
| Theorem | dfarea 26898* | Rewrite df-area 26894 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
| Theorem | areaf 26899 | Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area:dom area⟶(0[,)+∞) | ||
| Theorem | areacl 26900 | The area of a measurable region is a real number. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → (area‘𝑆) ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |