| Metamath
Proof Explorer Theorem List (p. 269 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 1cubrlem 26801 | The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)) | ||
| Theorem | 1cubr 26802 | The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⇒ ⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1)) | ||
| Theorem | dcubic1lem 26803 | Lemma for dcubic1 26805 and dcubic2 26804: simplify the cubic equation under the substitution 𝑋 = 𝑈 − 𝑀 / 𝑈. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑈 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ≠ 0) & ⊢ (𝜑 → 𝑋 = (𝑈 − (𝑀 / 𝑈))) ⇒ ⊢ (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0)) | ||
| Theorem | dcubic2 26804* | Reverse direction of dcubic 26806. Given a solution 𝑈 to the "substitution" quadratic equation 𝑋 = 𝑈 − 𝑀 / 𝑈, show that 𝑋 is in the desired form. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑈 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ≠ 0) & ⊢ (𝜑 → 𝑋 = (𝑈 − (𝑀 / 𝑈))) & ⊢ (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) | ||
| Theorem | dcubic1 26805 | Forward direction of dcubic 26806: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑋 = (𝑇 − (𝑀 / 𝑇))) ⇒ ⊢ (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) | ||
| Theorem | dcubic 26806* | Solutions to the depressed cubic, a special case of cubic 26809. (The definitions of 𝑀, 𝑁, 𝐺, 𝑇 here differ from mcubic 26807 by scale factors of -9, 54, 54 and -27 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))))) | ||
| Theorem | mcubic 26807* | Solutions to a monic cubic equation, a special case of cubic 26809. (Contributed by Mario Carneiro, 24-Apr-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = ((𝑁 + 𝐺) / 2)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · 𝐶))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − (9 · (𝐵 · 𝐶))) + (;27 · 𝐷))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑3) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / 3)))) | ||
| Theorem | cubic2 26808* | The solution to the general cubic equation, for arbitrary choices 𝐺 and 𝑇 of the square and cube roots. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = ((𝑁 + 𝐺) / 2)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶)))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (;27 · ((𝐴↑2) · 𝐷)))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))) | ||
| Theorem | cubic 26809* | The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4682 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝐺 = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶)))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (;27 · ((𝐴↑2) · 𝐷)))) & ⊢ (𝜑 → 𝑀 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ 𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))) | ||
| Theorem | binom4 26810 | Work out a quartic binomial. (You would think that by this point it would be faster to use binom 15844, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) | ||
| Theorem | dquartlem1 26811 | Lemma for dquart 26813. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) ⇒ ⊢ (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆 − 𝐼)))) | ||
| Theorem | dquartlem2 26812 | Lemma for dquart 26813. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0) ⇒ ⊢ (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷) | ||
| Theorem | dquart 26813 | Solve a depressed quartic equation. To eliminate 𝑆, which is the square root of a solution 𝑀 to the resolvent cubic equation, apply cubic 26809 or one of its variants. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0) & ⊢ (𝜑 → 𝐽 ∈ ℂ) & ⊢ (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝐵 / 2)) − ((𝐶 / 4) / 𝑆))) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ((𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆 − 𝐼)) ∨ (𝑋 = (𝑆 + 𝐽) ∨ 𝑋 = (𝑆 − 𝐽))))) | ||
| Theorem | quart1cl 26814 | Closure lemmas for quart 26821. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) | ||
| Theorem | quart1lem 26815 | Lemma for quart1 26816. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 = (𝑋 + (𝐴 / 4))) ⇒ ⊢ (𝜑 → 𝐷 = ((((𝐴↑4) / ;;256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅))) | ||
| Theorem | quart1 26816 | Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 = (𝑋 + (𝐴 / 4))) ⇒ ⊢ (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = (((𝑌↑4) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅))) | ||
| Theorem | quartlem1 26817 | Lemma for quart 26821. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑅 ∈ ℂ) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) ⇒ ⊢ (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (;27 · -(𝑄↑2))))) | ||
| Theorem | quartlem2 26818 | Closure lemmas for quart 26821. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) ⇒ ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) | ||
| Theorem | quartlem3 26819 | Closure lemmas for quart 26821. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) | ||
| Theorem | quartlem4 26820 | Closure lemmas for quart 26821. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) & ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) ⇒ ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) | ||
| Theorem | quart 26821 | The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 35133) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) & ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸 − 𝑆) + 𝐼) ∨ 𝑋 = ((𝐸 − 𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))) | ||
| Syntax | casin 26822 | The arcsine function. |
| class arcsin | ||
| Syntax | cacos 26823 | The arccosine function. |
| class arccos | ||
| Syntax | catan 26824 | The arctangent function. |
| class arctan | ||
| Definition | df-asin 26825 | Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ◡sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log, which we already know is total (except at 0). There are branch points at -1 and 1 (at which the function is defined), and branch cuts along the real line not between -1 and 1, which is to say (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | ||
| Definition | df-acos 26826 | Define the arccosine function. See also remarks for df-asin 26825. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | ||
| Definition | df-atan 26827 | Define the arctangent function. See also remarks for df-asin 26825. Unlike arcsin and arccos, this function is not defined everywhere, because tan(𝑧) ≠ ±i for all 𝑧 ∈ ℂ. For all other 𝑧, there is a formula for arctan(𝑧) in terms of log, and we take that as the definition. Branch points are at ±i; branch cuts are on the pure imaginary axis not between -i and i, which is to say {𝑧 ∈ ℂ ∣ (i · 𝑧) ∈ (-∞, -1) ∪ (1, +∞)}. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | ||
| Theorem | asinlem 26828 | The argument to the logarithm in df-asin 26825 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | ||
| Theorem | asinlem2 26829 | The argument to the logarithm in df-asin 26825 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1) | ||
| Theorem | asinlem3a 26830 | Lemma for asinlem3 26831. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinlem3 26831 | The argument to the logarithm in df-asin 26825 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinf 26832 | Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin:ℂ⟶ℂ | ||
| Theorem | asincl 26833 | Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | ||
| Theorem | acosf 26834 | Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos:ℂ⟶ℂ | ||
| Theorem | acoscl 26835 | Closure for the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) ∈ ℂ) | ||
| Theorem | atandm 26836 | Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | ||
| Theorem | atandm2 26837 | This form of atandm 26836 is a bit more useful for showing that the logarithms in df-atan 26827 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | ||
| Theorem | atandm3 26838 | A compact form of atandm 26836. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | ||
| Theorem | atandm4 26839 | A compact form of atandm 26836. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) | ||
| Theorem | atanf 26840 | Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan:(ℂ ∖ {-i, i})⟶ℂ | ||
| Theorem | atancl 26841 | Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ) | ||
| Theorem | asinval 26842 | Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | ||
| Theorem | acosval 26843 | Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) | ||
| Theorem | atanval 26844 | Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) | ||
| Theorem | atanre 26845 | A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | ||
| Theorem | asinneg 26846 | The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | ||
| Theorem | acosneg 26847 | The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arccos‘-𝐴) = (π − (arccos‘𝐴))) | ||
| Theorem | efiasin 26848 | The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | ||
| Theorem | sinasin 26849 | The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 26852 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) | ||
| Theorem | cosacos 26850 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(arccos‘𝐴)) = 𝐴) | ||
| Theorem | asinsinlem 26851 | Lemma for asinsin 26852. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴)))) | ||
| Theorem | asinsin 26852 | The arcsine function composed with sin is equal to the identity. This plus sinasin 26849 allow to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 26856). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
| Theorem | acoscos 26853 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴) | ||
| Theorem | asin1 26854 | The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arcsin‘1) = (π / 2) | ||
| Theorem | acos1 26855 | The arccosine of 1 is 0. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arccos‘1) = 0 | ||
| Theorem | reasinsin 26856 | The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
| Theorem | asinsinb 26857 | Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arcsin‘𝐴) = 𝐵 ↔ (sin‘𝐵) = 𝐴)) | ||
| Theorem | acoscosb 26858 | Relationship between cosine and arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (0(,)π)) → ((arccos‘𝐴) = 𝐵 ↔ (cos‘𝐵) = 𝐴)) | ||
| Theorem | asinbnd 26859 | The arcsine function has range within a vertical strip of the complex plane with real part between -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | acosbnd 26860 | The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) | ||
| Theorem | asinrebnd 26861 | Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ (-(π / 2)[,](π / 2))) | ||
| Theorem | asinrecl 26862 | The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ ℝ) | ||
| Theorem | acosrecl 26863 | The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ (-1[,]1) → (arccos‘𝐴) ∈ ℝ) | ||
| Theorem | cosasin 26864 | The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
| Theorem | sinacos 26865 | The sine of the arccosine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(arccos‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
| Theorem | atandmneg 26866 | The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | ||
| Theorem | atanneg 26867 | The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | ||
| Theorem | atan0 26868 | The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (arctan‘0) = 0 | ||
| Theorem | atandmcj 26869 | The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) | ||
| Theorem | atancj 26870 | The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26867 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))) | ||
| Theorem | atanrecl 26871 | The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | ||
| Theorem | efiatan 26872 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴))))) | ||
| Theorem | atanlogaddlem 26873 | Lemma for atanlogadd 26874. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | atanlogadd 26874 | The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | atanlogsublem 26875 | Lemma for atanlogsub 26876. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π)) | ||
| Theorem | atanlogsub 26876 | A variation on atanlogadd 26874, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
| Theorem | efiatan2 26877 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) | ||
| Theorem | 2efiatan 26878 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1)) | ||
| Theorem | tanatan 26879 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴) | ||
| Theorem | atandmtan 26880 | The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) | ||
| Theorem | cosatan 26881 | The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2))))) | ||
| Theorem | cosatanne0 26882 | The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) ≠ 0) | ||
| Theorem | atantan 26883 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴) | ||
| Theorem | atantanb 26884 | Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arctan‘𝐴) = 𝐵 ↔ (tan‘𝐵) = 𝐴)) | ||
| Theorem | atanbndlem 26885 | Lemma for atanbnd 26886. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | atanbnd 26886 | The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
| Theorem | atanord 26887 | The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (arctan‘𝐴) < (arctan‘𝐵))) | ||
| Theorem | atan1 26888 | The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.) |
| ⊢ (arctan‘1) = (π / 4) | ||
| Theorem | bndatandm 26889 | A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | ||
| Theorem | atans 26890* | The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) | ||
| Theorem | atans2 26891* | It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)) | ||
| Theorem | atansopn 26892* | The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ∈ (TopOpen‘ℂfld) | ||
| Theorem | atansssdm 26893* | The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ⊆ dom arctan | ||
| Theorem | ressatans 26894* | The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ ℝ ⊆ 𝑆 | ||
| Theorem | dvatan 26895* | The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (ℂ D (arctan ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) | ||
| Theorem | atancn 26896* | The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (arctan ↾ 𝑆) ∈ (𝑆–cn→ℂ) | ||
| Theorem | atantayl 26897* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴↑𝑛) / 𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | atantayl2 26898* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴↑𝑛) / 𝑛)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | atantayl3 26899* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
| Theorem | leibpilem1 26900 | Lemma for leibpi 26902. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |