Detailed syntax breakdown of Definition df-vma
| Step | Hyp | Ref
| Expression |
| 1 | | cvma 27135 |
. 2
class
Λ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cn 12266 |
. . 3
class
ℕ |
| 4 | | vs |
. . . 4
setvar 𝑠 |
| 5 | | vp |
. . . . . . 7
setvar 𝑝 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑝 |
| 7 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 8 | | cdvds 16290 |
. . . . . 6
class
∥ |
| 9 | 6, 7, 8 | wbr 5143 |
. . . . 5
wff 𝑝 ∥ 𝑥 |
| 10 | | cprime 16708 |
. . . . 5
class
ℙ |
| 11 | 9, 5, 10 | crab 3436 |
. . . 4
class {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} |
| 12 | 4 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 13 | | chash 14369 |
. . . . . . 7
class
♯ |
| 14 | 12, 13 | cfv 6561 |
. . . . . 6
class
(♯‘𝑠) |
| 15 | | c1 11156 |
. . . . . 6
class
1 |
| 16 | 14, 15 | wceq 1540 |
. . . . 5
wff
(♯‘𝑠) =
1 |
| 17 | 12 | cuni 4907 |
. . . . . 6
class ∪ 𝑠 |
| 18 | | clog 26596 |
. . . . . 6
class
log |
| 19 | 17, 18 | cfv 6561 |
. . . . 5
class
(log‘∪ 𝑠) |
| 20 | | cc0 11155 |
. . . . 5
class
0 |
| 21 | 16, 19, 20 | cif 4525 |
. . . 4
class
if((♯‘𝑠)
= 1, (log‘∪ 𝑠), 0) |
| 22 | 4, 11, 21 | csb 3899 |
. . 3
class
⦋{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠),
0) |
| 23 | 2, 3, 22 | cmpt 5225 |
. 2
class (𝑥 ∈ ℕ ↦
⦋{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠),
0)) |
| 24 | 1, 23 | wceq 1540 |
1
wff Λ =
(𝑥 ∈ ℕ ↦
⦋{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠),
0)) |