| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpval | Structured version Visualization version GIF version | ||
| Description: Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| Ref | Expression |
|---|---|
| chpval | ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . 4 ⊢ (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴)) | |
| 2 | 1 | oveq2d 7426 | . . 3 ⊢ (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴))) |
| 3 | 2 | sumeq1d 15721 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
| 4 | df-chp 27066 | . 2 ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) | |
| 5 | sumex 15709 | . 2 ⊢ Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6991 | 1 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 1c1 11135 ...cfz 13529 ⌊cfl 13812 Σcsu 15707 Λcvma 27059 ψcchp 27060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 df-sum 15708 df-chp 27066 |
| This theorem is referenced by: efchpcl 27092 chpfl 27117 chpp1 27122 chpwordi 27124 chp1 27134 chtlepsi 27174 chpval2 27186 vmadivsum 27450 selberg 27516 selberg3lem1 27525 selberg4 27529 pntsval2 27544 chpvalz 34665 |
| Copyright terms: Public domain | W3C validator |