![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpval | Structured version Visualization version GIF version |
Description: Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
chpval | ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6411 | . . . 4 ⊢ (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴)) | |
2 | 1 | oveq2d 6894 | . . 3 ⊢ (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴))) |
3 | 2 | sumeq1d 14772 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
4 | df-chp 25177 | . 2 ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) | |
5 | sumex 14759 | . 2 ⊢ Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) ∈ V | |
6 | 3, 4, 5 | fvmpt 6507 | 1 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6101 (class class class)co 6878 ℝcr 10223 1c1 10225 ...cfz 12580 ⌊cfl 12846 Σcsu 14757 Λcvma 25170 ψcchp 25171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-iota 6064 df-fun 6103 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-seq 13056 df-sum 14758 df-chp 25177 |
This theorem is referenced by: efchpcl 25203 chpfl 25228 chpp1 25233 chpwordi 25235 chp1 25245 chtlepsi 25283 chpval2 25295 vmadivsum 25523 selberg 25589 selberg3lem1 25598 selberg4 25602 pntsval2 25617 chpvalz 31226 |
Copyright terms: Public domain | W3C validator |