MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval Structured version   Visualization version   GIF version

Theorem chpval 27089
Description: Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpval (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem chpval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . 4 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
21oveq2d 7426 . . 3 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
32sumeq1d 15721 . 2 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
4 df-chp 27066 . 2 ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
5 sumex 15709 . 2 Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) ∈ V
63, 4, 5fvmpt 6991 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cr 11133  1c1 11135  ...cfz 13529  cfl 13812  Σcsu 15707  Λcvma 27059  ψcchp 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seq 14025  df-sum 15708  df-chp 27066
This theorem is referenced by:  efchpcl  27092  chpfl  27117  chpp1  27122  chpwordi  27124  chp1  27134  chtlepsi  27174  chpval2  27186  vmadivsum  27450  selberg  27516  selberg3lem1  27525  selberg4  27529  pntsval2  27544  chpvalz  34665
  Copyright terms: Public domain W3C validator