MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval Structured version   Visualization version   GIF version

Theorem chpval 27183
Description: Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpval (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem chpval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
21oveq2d 7464 . . 3 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
32sumeq1d 15748 . 2 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
4 df-chp 27160 . 2 ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
5 sumex 15736 . 2 Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) ∈ V
63, 4, 5fvmpt 7029 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185  ...cfz 13567  cfl 13841  Σcsu 15734  Λcvma 27153  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-sum 15735  df-chp 27160
This theorem is referenced by:  efchpcl  27186  chpfl  27211  chpp1  27216  chpwordi  27218  chp1  27228  chtlepsi  27268  chpval2  27280  vmadivsum  27544  selberg  27610  selberg3lem1  27619  selberg4  27623  pntsval2  27638  chpvalz  34605
  Copyright terms: Public domain W3C validator