MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval Structured version   Visualization version   GIF version

Theorem chpval 27039
Description: Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpval (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem chpval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
21oveq2d 7406 . . 3 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
32sumeq1d 15673 . 2 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
4 df-chp 27016 . 2 ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
5 sumex 15661 . 2 Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) ∈ V
63, 4, 5fvmpt 6971 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076  ...cfz 13475  cfl 13759  Σcsu 15659  Λcvma 27009  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fun 6516  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-sum 15660  df-chp 27016
This theorem is referenced by:  efchpcl  27042  chpfl  27067  chpp1  27072  chpwordi  27074  chp1  27084  chtlepsi  27124  chpval2  27136  vmadivsum  27400  selberg  27466  selberg3lem1  27475  selberg4  27479  pntsval2  27494  chpvalz  34626
  Copyright terms: Public domain W3C validator