| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ppi | Structured version Visualization version GIF version | ||
| Description: Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| df-ppi | ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cppi 27137 | . 2 class π | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cr 11154 | . . 3 class ℝ | |
| 4 | cc0 11155 | . . . . . 6 class 0 | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | cicc 13390 | . . . . . 6 class [,] | |
| 7 | 4, 5, 6 | co 7431 | . . . . 5 class (0[,]𝑥) |
| 8 | cprime 16708 | . . . . 5 class ℙ | |
| 9 | 7, 8 | cin 3950 | . . . 4 class ((0[,]𝑥) ∩ ℙ) |
| 10 | chash 14369 | . . . 4 class ♯ | |
| 11 | 9, 10 | cfv 6561 | . . 3 class (♯‘((0[,]𝑥) ∩ ℙ)) |
| 12 | 2, 3, 11 | cmpt 5225 | . 2 class (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) |
| 13 | 1, 12 | wceq 1540 | 1 wff π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ppival 27170 ppif 27173 |
| Copyright terms: Public domain | W3C validator |