MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ppi Structured version   Visualization version   GIF version

Definition df-ppi 27010
Description: Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-ppi π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))

Detailed syntax breakdown of Definition df-ppi
StepHypRef Expression
1 cppi 27004 . 2 class π
2 vx . . 3 setvar 𝑥
3 cr 11067 . . 3 class
4 cc0 11068 . . . . . 6 class 0
52cv 1539 . . . . . 6 class 𝑥
6 cicc 13309 . . . . . 6 class [,]
74, 5, 6co 7387 . . . . 5 class (0[,]𝑥)
8 cprime 16641 . . . . 5 class
97, 8cin 3913 . . . 4 class ((0[,]𝑥) ∩ ℙ)
10 chash 14295 . . . 4 class
119, 10cfv 6511 . . 3 class (♯‘((0[,]𝑥) ∩ ℙ))
122, 3, 11cmpt 5188 . 2 class (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))
131, 12wceq 1540 1 wff π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))
Colors of variables: wff setvar class
This definition is referenced by:  ppival  27037  ppif  27040
  Copyright terms: Public domain W3C validator