Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ppi | Structured version Visualization version GIF version |
Description: Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
df-ppi | ⊢ π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cppi 26243 | . 2 class π | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cr 10870 | . . 3 class ℝ | |
4 | cc0 10871 | . . . . . 6 class 0 | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | cicc 13082 | . . . . . 6 class [,] | |
7 | 4, 5, 6 | co 7275 | . . . . 5 class (0[,]𝑥) |
8 | cprime 16376 | . . . . 5 class ℙ | |
9 | 7, 8 | cin 3886 | . . . 4 class ((0[,]𝑥) ∩ ℙ) |
10 | chash 14044 | . . . 4 class ♯ | |
11 | 9, 10 | cfv 6433 | . . 3 class (♯‘((0[,]𝑥) ∩ ℙ)) |
12 | 2, 3, 11 | cmpt 5157 | . 2 class (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) |
13 | 1, 12 | wceq 1539 | 1 wff π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ))) |
Colors of variables: wff setvar class |
This definition is referenced by: ppival 26276 ppif 26279 |
Copyright terms: Public domain | W3C validator |