| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-chr | Structured version Visualization version GIF version | ||
| Description: The characteristic of a ring is the smallest positive integer which is equal to 0 when interpreted in the ring, or 0 if there is no such positive integer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| df-chr | ⊢ chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cchr 21512 | . 2 class chr | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 5 | cur 20178 | . . . . 5 class 1r | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (1r‘𝑔) |
| 7 | cod 19542 | . . . . 5 class od | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class (od‘𝑔) |
| 9 | 6, 8 | cfv 6561 | . . 3 class ((od‘𝑔)‘(1r‘𝑔)) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r‘𝑔))) |
| 11 | 1, 10 | wceq 1540 | 1 wff chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r‘𝑔))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: chrval 21538 |
| Copyright terms: Public domain | W3C validator |