Detailed syntax breakdown of Definition df-zn
| Step | Hyp | Ref
| Expression |
| 1 | | czn 21505 |
. 2
class
ℤ/nℤ |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | cn0 12522 |
. . 3
class
ℕ0 |
| 4 | | vz |
. . . 4
setvar 𝑧 |
| 5 | | czring 21449 |
. . . 4
class
ℤring |
| 6 | | vs |
. . . . 5
setvar 𝑠 |
| 7 | 4 | cv 1539 |
. . . . . 6
class 𝑧 |
| 8 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑛 |
| 9 | 8 | csn 4624 |
. . . . . . . 8
class {𝑛} |
| 10 | | crsp 21209 |
. . . . . . . . 9
class
RSpan |
| 11 | 7, 10 | cfv 6559 |
. . . . . . . 8
class
(RSpan‘𝑧) |
| 12 | 9, 11 | cfv 6559 |
. . . . . . 7
class
((RSpan‘𝑧)‘{𝑛}) |
| 13 | | cqg 19136 |
. . . . . . 7
class
~QG |
| 14 | 7, 12, 13 | co 7429 |
. . . . . 6
class (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛})) |
| 15 | | cqus 17546 |
. . . . . 6
class
/s |
| 16 | 7, 14, 15 | co 7429 |
. . . . 5
class (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) |
| 17 | 6 | cv 1539 |
. . . . . 6
class 𝑠 |
| 18 | | cnx 17226 |
. . . . . . . 8
class
ndx |
| 19 | | cple 17300 |
. . . . . . . 8
class
le |
| 20 | 18, 19 | cfv 6559 |
. . . . . . 7
class
(le‘ndx) |
| 21 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 22 | | czrh 21502 |
. . . . . . . . . 10
class
ℤRHom |
| 23 | 17, 22 | cfv 6559 |
. . . . . . . . 9
class
(ℤRHom‘𝑠) |
| 24 | | cc0 11151 |
. . . . . . . . . . 11
class
0 |
| 25 | 8, 24 | wceq 1540 |
. . . . . . . . . 10
wff 𝑛 = 0 |
| 26 | | cz 12609 |
. . . . . . . . . 10
class
ℤ |
| 27 | | cfzo 13690 |
. . . . . . . . . . 11
class
..^ |
| 28 | 24, 8, 27 | co 7429 |
. . . . . . . . . 10
class
(0..^𝑛) |
| 29 | 25, 26, 28 | cif 4524 |
. . . . . . . . 9
class if(𝑛 = 0, ℤ, (0..^𝑛)) |
| 30 | 23, 29 | cres 5685 |
. . . . . . . 8
class
((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) |
| 31 | 21 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 32 | | cle 11292 |
. . . . . . . . . 10
class
≤ |
| 33 | 31, 32 | ccom 5687 |
. . . . . . . . 9
class (𝑓 ∘ ≤ ) |
| 34 | 31 | ccnv 5682 |
. . . . . . . . 9
class ◡𝑓 |
| 35 | 33, 34 | ccom 5687 |
. . . . . . . 8
class ((𝑓 ∘ ≤ ) ∘ ◡𝑓) |
| 36 | 21, 30, 35 | csb 3898 |
. . . . . . 7
class
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓) |
| 37 | 20, 36 | cop 4630 |
. . . . . 6
class
〈(le‘ndx), ⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉 |
| 38 | | csts 17196 |
. . . . . 6
class
sSet |
| 39 | 17, 37, 38 | co 7429 |
. . . . 5
class (𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) |
| 40 | 6, 16, 39 | csb 3898 |
. . . 4
class
⦋(𝑧
/s (𝑧
~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) |
| 41 | 4, 5, 40 | csb 3898 |
. . 3
class
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) |
| 42 | 2, 3, 41 | cmpt 5223 |
. 2
class (𝑛 ∈ ℕ0
↦ ⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
| 43 | 1, 42 | wceq 1540 |
1
wff
ℤ/nℤ = (𝑛 ∈ ℕ0 ↦
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |