![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrval | Structured version Visualization version GIF version |
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
chrval.o | β’ π = (odβπ ) |
chrval.u | β’ 1 = (1rβπ ) |
chrval.c | β’ πΆ = (chrβπ ) |
Ref | Expression |
---|---|
chrval | β’ (πβ 1 ) = πΆ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrval.c | . 2 β’ πΆ = (chrβπ ) | |
2 | fveq2 6890 | . . . . . 6 β’ (π = π β (odβπ) = (odβπ )) | |
3 | chrval.o | . . . . . 6 β’ π = (odβπ ) | |
4 | 2, 3 | eqtr4di 2788 | . . . . 5 β’ (π = π β (odβπ) = π) |
5 | fveq2 6890 | . . . . . 6 β’ (π = π β (1rβπ) = (1rβπ )) | |
6 | chrval.u | . . . . . 6 β’ 1 = (1rβπ ) | |
7 | 5, 6 | eqtr4di 2788 | . . . . 5 β’ (π = π β (1rβπ) = 1 ) |
8 | 4, 7 | fveq12d 6897 | . . . 4 β’ (π = π β ((odβπ)β(1rβπ)) = (πβ 1 )) |
9 | df-chr 21274 | . . . 4 β’ chr = (π β V β¦ ((odβπ)β(1rβπ))) | |
10 | fvex 6903 | . . . 4 β’ (πβ 1 ) β V | |
11 | 8, 9, 10 | fvmpt 6997 | . . 3 β’ (π β V β (chrβπ ) = (πβ 1 )) |
12 | fvprc 6882 | . . . 4 β’ (Β¬ π β V β (chrβπ ) = β ) | |
13 | fvprc 6882 | . . . . . . 7 β’ (Β¬ π β V β (odβπ ) = β ) | |
14 | 3, 13 | eqtrid 2782 | . . . . . 6 β’ (Β¬ π β V β π = β ) |
15 | 14 | fveq1d 6892 | . . . . 5 β’ (Β¬ π β V β (πβ 1 ) = (β β 1 )) |
16 | 0fv 6934 | . . . . 5 β’ (β β 1 ) = β | |
17 | 15, 16 | eqtrdi 2786 | . . . 4 β’ (Β¬ π β V β (πβ 1 ) = β ) |
18 | 12, 17 | eqtr4d 2773 | . . 3 β’ (Β¬ π β V β (chrβπ ) = (πβ 1 )) |
19 | 11, 18 | pm2.61i 182 | . 2 β’ (chrβπ ) = (πβ 1 ) |
20 | 1, 19 | eqtr2i 2759 | 1 β’ (πβ 1 ) = πΆ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 βcfv 6542 odcod 19433 1rcur 20075 chrcchr 21270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-chr 21274 |
This theorem is referenced by: chrcl 21297 chrid 21298 chrdvds 21299 chrcong 21300 dvdschrmulg 32650 subrgchr 32656 ofldchr 32702 ply1chr 32935 zrhchr 33254 |
Copyright terms: Public domain | W3C validator |