MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrval Structured version   Visualization version   GIF version

Theorem chrval 20729
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
chrval.o 𝑂 = (od‘𝑅)
chrval.u 1 = (1r𝑅)
chrval.c 𝐶 = (chr‘𝑅)
Assertion
Ref Expression
chrval (𝑂1 ) = 𝐶

Proof of Theorem chrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 chrval.c . 2 𝐶 = (chr‘𝑅)
2 fveq2 6774 . . . . . 6 (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅))
3 chrval.o . . . . . 6 𝑂 = (od‘𝑅)
42, 3eqtr4di 2796 . . . . 5 (𝑟 = 𝑅 → (od‘𝑟) = 𝑂)
5 fveq2 6774 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
6 chrval.u . . . . . 6 1 = (1r𝑅)
75, 6eqtr4di 2796 . . . . 5 (𝑟 = 𝑅 → (1r𝑟) = 1 )
84, 7fveq12d 6781 . . . 4 (𝑟 = 𝑅 → ((od‘𝑟)‘(1r𝑟)) = (𝑂1 ))
9 df-chr 20707 . . . 4 chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r𝑟)))
10 fvex 6787 . . . 4 (𝑂1 ) ∈ V
118, 9, 10fvmpt 6875 . . 3 (𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
12 fvprc 6766 . . . 4 𝑅 ∈ V → (chr‘𝑅) = ∅)
13 fvprc 6766 . . . . . . 7 𝑅 ∈ V → (od‘𝑅) = ∅)
143, 13eqtrid 2790 . . . . . 6 𝑅 ∈ V → 𝑂 = ∅)
1514fveq1d 6776 . . . . 5 𝑅 ∈ V → (𝑂1 ) = (∅‘ 1 ))
16 0fv 6813 . . . . 5 (∅‘ 1 ) = ∅
1715, 16eqtrdi 2794 . . . 4 𝑅 ∈ V → (𝑂1 ) = ∅)
1812, 17eqtr4d 2781 . . 3 𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
1911, 18pm2.61i 182 . 2 (chr‘𝑅) = (𝑂1 )
201, 19eqtr2i 2767 1 (𝑂1 ) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433  odcod 19132  1rcur 19737  chrcchr 20703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-chr 20707
This theorem is referenced by:  chrcl  20730  chrid  20731  chrdvds  20732  chrcong  20733  dvdschrmulg  31483  subrgchr  31491  ofldchr  31513  ply1chr  31669  zrhchr  31926
  Copyright terms: Public domain W3C validator