Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chrval | Structured version Visualization version GIF version |
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
chrval.o | ⊢ 𝑂 = (od‘𝑅) |
chrval.u | ⊢ 1 = (1r‘𝑅) |
chrval.c | ⊢ 𝐶 = (chr‘𝑅) |
Ref | Expression |
---|---|
chrval | ⊢ (𝑂‘ 1 ) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrval.c | . 2 ⊢ 𝐶 = (chr‘𝑅) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅)) | |
3 | chrval.o | . . . . . 6 ⊢ 𝑂 = (od‘𝑅) | |
4 | 2, 3 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = 𝑂) |
5 | fveq2 6756 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
6 | chrval.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | eqtr4di 2797 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
8 | 4, 7 | fveq12d 6763 | . . . 4 ⊢ (𝑟 = 𝑅 → ((od‘𝑟)‘(1r‘𝑟)) = (𝑂‘ 1 )) |
9 | df-chr 20619 | . . . 4 ⊢ chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r‘𝑟))) | |
10 | fvex 6769 | . . . 4 ⊢ (𝑂‘ 1 ) ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | . . 3 ⊢ (𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
12 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = ∅) | |
13 | fvprc 6748 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (od‘𝑅) = ∅) | |
14 | 3, 13 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
15 | 14 | fveq1d 6758 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = (∅‘ 1 )) |
16 | 0fv 6795 | . . . . 5 ⊢ (∅‘ 1 ) = ∅ | |
17 | 15, 16 | eqtrdi 2795 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = ∅) |
18 | 12, 17 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
19 | 11, 18 | pm2.61i 182 | . 2 ⊢ (chr‘𝑅) = (𝑂‘ 1 ) |
20 | 1, 19 | eqtr2i 2767 | 1 ⊢ (𝑂‘ 1 ) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 odcod 19047 1rcur 19652 chrcchr 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-chr 20619 |
This theorem is referenced by: chrcl 20642 chrid 20643 chrdvds 20644 chrcong 20645 dvdschrmulg 31385 subrgchr 31393 ofldchr 31415 ply1chr 31571 zrhchr 31826 |
Copyright terms: Public domain | W3C validator |