MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrval Structured version   Visualization version   GIF version

Theorem chrval 21296
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
chrval.o 𝑂 = (odβ€˜π‘…)
chrval.u 1 = (1rβ€˜π‘…)
chrval.c 𝐢 = (chrβ€˜π‘…)
Assertion
Ref Expression
chrval (π‘‚β€˜ 1 ) = 𝐢

Proof of Theorem chrval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 chrval.c . 2 𝐢 = (chrβ€˜π‘…)
2 fveq2 6890 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (odβ€˜π‘Ÿ) = (odβ€˜π‘…))
3 chrval.o . . . . . 6 𝑂 = (odβ€˜π‘…)
42, 3eqtr4di 2788 . . . . 5 (π‘Ÿ = 𝑅 β†’ (odβ€˜π‘Ÿ) = 𝑂)
5 fveq2 6890 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = (1rβ€˜π‘…))
6 chrval.u . . . . . 6 1 = (1rβ€˜π‘…)
75, 6eqtr4di 2788 . . . . 5 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = 1 )
84, 7fveq12d 6897 . . . 4 (π‘Ÿ = 𝑅 β†’ ((odβ€˜π‘Ÿ)β€˜(1rβ€˜π‘Ÿ)) = (π‘‚β€˜ 1 ))
9 df-chr 21274 . . . 4 chr = (π‘Ÿ ∈ V ↦ ((odβ€˜π‘Ÿ)β€˜(1rβ€˜π‘Ÿ)))
10 fvex 6903 . . . 4 (π‘‚β€˜ 1 ) ∈ V
118, 9, 10fvmpt 6997 . . 3 (𝑅 ∈ V β†’ (chrβ€˜π‘…) = (π‘‚β€˜ 1 ))
12 fvprc 6882 . . . 4 (Β¬ 𝑅 ∈ V β†’ (chrβ€˜π‘…) = βˆ…)
13 fvprc 6882 . . . . . . 7 (Β¬ 𝑅 ∈ V β†’ (odβ€˜π‘…) = βˆ…)
143, 13eqtrid 2782 . . . . . 6 (Β¬ 𝑅 ∈ V β†’ 𝑂 = βˆ…)
1514fveq1d 6892 . . . . 5 (Β¬ 𝑅 ∈ V β†’ (π‘‚β€˜ 1 ) = (βˆ…β€˜ 1 ))
16 0fv 6934 . . . . 5 (βˆ…β€˜ 1 ) = βˆ…
1715, 16eqtrdi 2786 . . . 4 (Β¬ 𝑅 ∈ V β†’ (π‘‚β€˜ 1 ) = βˆ…)
1812, 17eqtr4d 2773 . . 3 (Β¬ 𝑅 ∈ V β†’ (chrβ€˜π‘…) = (π‘‚β€˜ 1 ))
1911, 18pm2.61i 182 . 2 (chrβ€˜π‘…) = (π‘‚β€˜ 1 )
201, 19eqtr2i 2759 1 (π‘‚β€˜ 1 ) = 𝐢
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4321  β€˜cfv 6542  odcod 19433  1rcur 20075  chrcchr 21270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-chr 21274
This theorem is referenced by:  chrcl  21297  chrid  21298  chrdvds  21299  chrcong  21300  dvdschrmulg  32650  subrgchr  32656  ofldchr  32702  ply1chr  32935  zrhchr  33254
  Copyright terms: Public domain W3C validator