MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrval Structured version   Visualization version   GIF version

Theorem chrval 21484
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
chrval.o 𝑂 = (od‘𝑅)
chrval.u 1 = (1r𝑅)
chrval.c 𝐶 = (chr‘𝑅)
Assertion
Ref Expression
chrval (𝑂1 ) = 𝐶

Proof of Theorem chrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 chrval.c . 2 𝐶 = (chr‘𝑅)
2 fveq2 6876 . . . . . 6 (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅))
3 chrval.o . . . . . 6 𝑂 = (od‘𝑅)
42, 3eqtr4di 2788 . . . . 5 (𝑟 = 𝑅 → (od‘𝑟) = 𝑂)
5 fveq2 6876 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
6 chrval.u . . . . . 6 1 = (1r𝑅)
75, 6eqtr4di 2788 . . . . 5 (𝑟 = 𝑅 → (1r𝑟) = 1 )
84, 7fveq12d 6883 . . . 4 (𝑟 = 𝑅 → ((od‘𝑟)‘(1r𝑟)) = (𝑂1 ))
9 df-chr 21466 . . . 4 chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r𝑟)))
10 fvex 6889 . . . 4 (𝑂1 ) ∈ V
118, 9, 10fvmpt 6986 . . 3 (𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
12 fvprc 6868 . . . 4 𝑅 ∈ V → (chr‘𝑅) = ∅)
13 fvprc 6868 . . . . . . 7 𝑅 ∈ V → (od‘𝑅) = ∅)
143, 13eqtrid 2782 . . . . . 6 𝑅 ∈ V → 𝑂 = ∅)
1514fveq1d 6878 . . . . 5 𝑅 ∈ V → (𝑂1 ) = (∅‘ 1 ))
16 0fv 6920 . . . . 5 (∅‘ 1 ) = ∅
1715, 16eqtrdi 2786 . . . 4 𝑅 ∈ V → (𝑂1 ) = ∅)
1812, 17eqtr4d 2773 . . 3 𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
1911, 18pm2.61i 182 . 2 (chr‘𝑅) = (𝑂1 )
201, 19eqtr2i 2759 1 (𝑂1 ) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cfv 6531  odcod 19505  1rcur 20141  chrcchr 21462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-chr 21466
This theorem is referenced by:  chrcl  21485  chrid  21486  chrdvds  21487  chrcong  21488  dvdschrmulg  21489  ply1chr  22244  subrgchr  33232  ofldchr  33336  zrhchr  34005
  Copyright terms: Public domain W3C validator