MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrval Structured version   Visualization version   GIF version

Theorem chrval 21561
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
chrval.o 𝑂 = (od‘𝑅)
chrval.u 1 = (1r𝑅)
chrval.c 𝐶 = (chr‘𝑅)
Assertion
Ref Expression
chrval (𝑂1 ) = 𝐶

Proof of Theorem chrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 chrval.c . 2 𝐶 = (chr‘𝑅)
2 fveq2 6920 . . . . . 6 (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅))
3 chrval.o . . . . . 6 𝑂 = (od‘𝑅)
42, 3eqtr4di 2798 . . . . 5 (𝑟 = 𝑅 → (od‘𝑟) = 𝑂)
5 fveq2 6920 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
6 chrval.u . . . . . 6 1 = (1r𝑅)
75, 6eqtr4di 2798 . . . . 5 (𝑟 = 𝑅 → (1r𝑟) = 1 )
84, 7fveq12d 6927 . . . 4 (𝑟 = 𝑅 → ((od‘𝑟)‘(1r𝑟)) = (𝑂1 ))
9 df-chr 21539 . . . 4 chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r𝑟)))
10 fvex 6933 . . . 4 (𝑂1 ) ∈ V
118, 9, 10fvmpt 7029 . . 3 (𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
12 fvprc 6912 . . . 4 𝑅 ∈ V → (chr‘𝑅) = ∅)
13 fvprc 6912 . . . . . . 7 𝑅 ∈ V → (od‘𝑅) = ∅)
143, 13eqtrid 2792 . . . . . 6 𝑅 ∈ V → 𝑂 = ∅)
1514fveq1d 6922 . . . . 5 𝑅 ∈ V → (𝑂1 ) = (∅‘ 1 ))
16 0fv 6964 . . . . 5 (∅‘ 1 ) = ∅
1715, 16eqtrdi 2796 . . . 4 𝑅 ∈ V → (𝑂1 ) = ∅)
1812, 17eqtr4d 2783 . . 3 𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
1911, 18pm2.61i 182 . 2 (chr‘𝑅) = (𝑂1 )
201, 19eqtr2i 2769 1 (𝑂1 ) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cfv 6573  odcod 19566  1rcur 20208  chrcchr 21535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-chr 21539
This theorem is referenced by:  chrcl  21562  chrid  21563  chrdvds  21564  chrcong  21565  dvdschrmulg  21566  ply1chr  22331  subrgchr  33217  ofldchr  33309  zrhchr  33922
  Copyright terms: Public domain W3C validator