| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chrval | Structured version Visualization version GIF version | ||
| Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| chrval.o | ⊢ 𝑂 = (od‘𝑅) |
| chrval.u | ⊢ 1 = (1r‘𝑅) |
| chrval.c | ⊢ 𝐶 = (chr‘𝑅) |
| Ref | Expression |
|---|---|
| chrval | ⊢ (𝑂‘ 1 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrval.c | . 2 ⊢ 𝐶 = (chr‘𝑅) | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅)) | |
| 3 | chrval.o | . . . . . 6 ⊢ 𝑂 = (od‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = 𝑂) |
| 5 | fveq2 6861 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 6 | chrval.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 8 | 4, 7 | fveq12d 6868 | . . . 4 ⊢ (𝑟 = 𝑅 → ((od‘𝑟)‘(1r‘𝑟)) = (𝑂‘ 1 )) |
| 9 | df-chr 21422 | . . . 4 ⊢ chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r‘𝑟))) | |
| 10 | fvex 6874 | . . . 4 ⊢ (𝑂‘ 1 ) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6971 | . . 3 ⊢ (𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
| 12 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = ∅) | |
| 13 | fvprc 6853 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (od‘𝑅) = ∅) | |
| 14 | 3, 13 | eqtrid 2777 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 15 | 14 | fveq1d 6863 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = (∅‘ 1 )) |
| 16 | 0fv 6905 | . . . . 5 ⊢ (∅‘ 1 ) = ∅ | |
| 17 | 15, 16 | eqtrdi 2781 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = ∅) |
| 18 | 12, 17 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
| 19 | 11, 18 | pm2.61i 182 | . 2 ⊢ (chr‘𝑅) = (𝑂‘ 1 ) |
| 20 | 1, 19 | eqtr2i 2754 | 1 ⊢ (𝑂‘ 1 ) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ‘cfv 6514 odcod 19461 1rcur 20097 chrcchr 21418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-chr 21422 |
| This theorem is referenced by: chrcl 21441 chrid 21442 chrdvds 21443 chrcong 21444 dvdschrmulg 21445 ply1chr 22200 subrgchr 33195 ofldchr 33299 zrhchr 33971 |
| Copyright terms: Public domain | W3C validator |