| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chrval | Structured version Visualization version GIF version | ||
| Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| chrval.o | ⊢ 𝑂 = (od‘𝑅) |
| chrval.u | ⊢ 1 = (1r‘𝑅) |
| chrval.c | ⊢ 𝐶 = (chr‘𝑅) |
| Ref | Expression |
|---|---|
| chrval | ⊢ (𝑂‘ 1 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrval.c | . 2 ⊢ 𝐶 = (chr‘𝑅) | |
| 2 | fveq2 6876 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅)) | |
| 3 | chrval.o | . . . . . 6 ⊢ 𝑂 = (od‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2788 | . . . . 5 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = 𝑂) |
| 5 | fveq2 6876 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 6 | chrval.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2788 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 8 | 4, 7 | fveq12d 6883 | . . . 4 ⊢ (𝑟 = 𝑅 → ((od‘𝑟)‘(1r‘𝑟)) = (𝑂‘ 1 )) |
| 9 | df-chr 21466 | . . . 4 ⊢ chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r‘𝑟))) | |
| 10 | fvex 6889 | . . . 4 ⊢ (𝑂‘ 1 ) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6986 | . . 3 ⊢ (𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
| 12 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = ∅) | |
| 13 | fvprc 6868 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (od‘𝑅) = ∅) | |
| 14 | 3, 13 | eqtrid 2782 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 15 | 14 | fveq1d 6878 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = (∅‘ 1 )) |
| 16 | 0fv 6920 | . . . . 5 ⊢ (∅‘ 1 ) = ∅ | |
| 17 | 15, 16 | eqtrdi 2786 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = ∅) |
| 18 | 12, 17 | eqtr4d 2773 | . . 3 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
| 19 | 11, 18 | pm2.61i 182 | . 2 ⊢ (chr‘𝑅) = (𝑂‘ 1 ) |
| 20 | 1, 19 | eqtr2i 2759 | 1 ⊢ (𝑂‘ 1 ) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ‘cfv 6531 odcod 19505 1rcur 20141 chrcchr 21462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-chr 21466 |
| This theorem is referenced by: chrcl 21485 chrid 21486 chrdvds 21487 chrcong 21488 dvdschrmulg 21489 ply1chr 22244 subrgchr 33232 ofldchr 33336 zrhchr 34005 |
| Copyright terms: Public domain | W3C validator |