| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chrval | Structured version Visualization version GIF version | ||
| Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| chrval.o | ⊢ 𝑂 = (od‘𝑅) |
| chrval.u | ⊢ 1 = (1r‘𝑅) |
| chrval.c | ⊢ 𝐶 = (chr‘𝑅) |
| Ref | Expression |
|---|---|
| chrval | ⊢ (𝑂‘ 1 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrval.c | . 2 ⊢ 𝐶 = (chr‘𝑅) | |
| 2 | fveq2 6828 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅)) | |
| 3 | chrval.o | . . . . . 6 ⊢ 𝑂 = (od‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → (od‘𝑟) = 𝑂) |
| 5 | fveq2 6828 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 6 | chrval.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 8 | 4, 7 | fveq12d 6835 | . . . 4 ⊢ (𝑟 = 𝑅 → ((od‘𝑟)‘(1r‘𝑟)) = (𝑂‘ 1 )) |
| 9 | df-chr 21444 | . . . 4 ⊢ chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r‘𝑟))) | |
| 10 | fvex 6841 | . . . 4 ⊢ (𝑂‘ 1 ) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6935 | . . 3 ⊢ (𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
| 12 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = ∅) | |
| 13 | fvprc 6820 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → (od‘𝑅) = ∅) | |
| 14 | 3, 13 | eqtrid 2780 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 15 | 14 | fveq1d 6830 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = (∅‘ 1 )) |
| 16 | 0fv 6869 | . . . . 5 ⊢ (∅‘ 1 ) = ∅ | |
| 17 | 15, 16 | eqtrdi 2784 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑂‘ 1 ) = ∅) |
| 18 | 12, 17 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝑅 ∈ V → (chr‘𝑅) = (𝑂‘ 1 )) |
| 19 | 11, 18 | pm2.61i 182 | . 2 ⊢ (chr‘𝑅) = (𝑂‘ 1 ) |
| 20 | 1, 19 | eqtr2i 2757 | 1 ⊢ (𝑂‘ 1 ) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ‘cfv 6486 odcod 19438 1rcur 20101 chrcchr 21440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-chr 21444 |
| This theorem is referenced by: chrcl 21463 chrid 21464 chrdvds 21465 chrcong 21466 dvdschrmulg 21467 ofldchr 21515 ply1chr 22222 subrgchr 33211 zrhchr 34008 |
| Copyright terms: Public domain | W3C validator |