MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrval Structured version   Visualization version   GIF version

Theorem chrval 20641
Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
chrval.o 𝑂 = (od‘𝑅)
chrval.u 1 = (1r𝑅)
chrval.c 𝐶 = (chr‘𝑅)
Assertion
Ref Expression
chrval (𝑂1 ) = 𝐶

Proof of Theorem chrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 chrval.c . 2 𝐶 = (chr‘𝑅)
2 fveq2 6756 . . . . . 6 (𝑟 = 𝑅 → (od‘𝑟) = (od‘𝑅))
3 chrval.o . . . . . 6 𝑂 = (od‘𝑅)
42, 3eqtr4di 2797 . . . . 5 (𝑟 = 𝑅 → (od‘𝑟) = 𝑂)
5 fveq2 6756 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
6 chrval.u . . . . . 6 1 = (1r𝑅)
75, 6eqtr4di 2797 . . . . 5 (𝑟 = 𝑅 → (1r𝑟) = 1 )
84, 7fveq12d 6763 . . . 4 (𝑟 = 𝑅 → ((od‘𝑟)‘(1r𝑟)) = (𝑂1 ))
9 df-chr 20619 . . . 4 chr = (𝑟 ∈ V ↦ ((od‘𝑟)‘(1r𝑟)))
10 fvex 6769 . . . 4 (𝑂1 ) ∈ V
118, 9, 10fvmpt 6857 . . 3 (𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
12 fvprc 6748 . . . 4 𝑅 ∈ V → (chr‘𝑅) = ∅)
13 fvprc 6748 . . . . . . 7 𝑅 ∈ V → (od‘𝑅) = ∅)
143, 13eqtrid 2790 . . . . . 6 𝑅 ∈ V → 𝑂 = ∅)
1514fveq1d 6758 . . . . 5 𝑅 ∈ V → (𝑂1 ) = (∅‘ 1 ))
16 0fv 6795 . . . . 5 (∅‘ 1 ) = ∅
1715, 16eqtrdi 2795 . . . 4 𝑅 ∈ V → (𝑂1 ) = ∅)
1812, 17eqtr4d 2781 . . 3 𝑅 ∈ V → (chr‘𝑅) = (𝑂1 ))
1911, 18pm2.61i 182 . 2 (chr‘𝑅) = (𝑂1 )
201, 19eqtr2i 2767 1 (𝑂1 ) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cfv 6418  odcod 19047  1rcur 19652  chrcchr 20615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-chr 20619
This theorem is referenced by:  chrcl  20642  chrid  20643  chrdvds  20644  chrcong  20645  dvdschrmulg  31385  subrgchr  31393  ofldchr  31415  ply1chr  31571  zrhchr  31826
  Copyright terms: Public domain W3C validator