HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 31297
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31396 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31325. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30920 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30905 . . . . 5 class
43cpw 4580 . . . 4 class 𝒫 ℋ
54cpw 4580 . . 3 class 𝒫 𝒫 ℋ
62cv 1539 . . . . . 6 class 𝑥
76cuni 4888 . . . . 5 class 𝑥
8 cort 30916 . . . . 5 class
97, 8cfv 6536 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6536 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5206 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1540 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  31320
  Copyright terms: Public domain W3C validator