![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version |
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 30663 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 30592. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsup 30187 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 30172 | . . . . 5 class ℋ | |
4 | 3 | cpw 4603 | . . . 4 class 𝒫 ℋ |
5 | 4 | cpw 4603 | . . 3 class 𝒫 𝒫 ℋ |
6 | 2 | cv 1541 | . . . . . 6 class 𝑥 |
7 | 6 | cuni 4909 | . . . . 5 class ∪ 𝑥 |
8 | cort 30183 | . . . . 5 class ⊥ | |
9 | 7, 8 | cfv 6544 | . . . 4 class (⊥‘∪ 𝑥) |
10 | 9, 8 | cfv 6544 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) |
11 | 2, 5, 10 | cmpt 5232 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
12 | 1, 11 | wceq 1542 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: hsupval 30587 |
Copyright terms: Public domain | W3C validator |