![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version |
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31442 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31371. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsup 30966 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 30951 | . . . . 5 class ℋ | |
4 | 3 | cpw 4622 | . . . 4 class 𝒫 ℋ |
5 | 4 | cpw 4622 | . . 3 class 𝒫 𝒫 ℋ |
6 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
7 | 6 | cuni 4931 | . . . . 5 class ∪ 𝑥 |
8 | cort 30962 | . . . . 5 class ⊥ | |
9 | 7, 8 | cfv 6573 | . . . 4 class (⊥‘∪ 𝑥) |
10 | 9, 8 | cfv 6573 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) |
11 | 2, 5, 10 | cmpt 5249 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
12 | 1, 11 | wceq 1537 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: hsupval 31366 |
Copyright terms: Public domain | W3C validator |