HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 29718
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 29817 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 29746. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 29341 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 29326 . . . . 5 class
43cpw 4539 . . . 4 class 𝒫 ℋ
54cpw 4539 . . 3 class 𝒫 𝒫 ℋ
62cv 1538 . . . . . 6 class 𝑥
76cuni 4844 . . . . 5 class 𝑥
8 cort 29337 . . . . 5 class
97, 8cfv 6458 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6458 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5164 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1539 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  29741
  Copyright terms: Public domain W3C validator