HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 31286
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31385 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31314. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30909 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30894 . . . . 5 class
43cpw 4550 . . . 4 class 𝒫 ℋ
54cpw 4550 . . 3 class 𝒫 𝒫 ℋ
62cv 1540 . . . . . 6 class 𝑥
76cuni 4859 . . . . 5 class 𝑥
8 cort 30905 . . . . 5 class
97, 8cfv 6481 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6481 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5172 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1541 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  31309
  Copyright terms: Public domain W3C validator