HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 31340
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31439 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31368. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30963 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30948 . . . . 5 class
43cpw 4605 . . . 4 class 𝒫 ℋ
54cpw 4605 . . 3 class 𝒫 𝒫 ℋ
62cv 1536 . . . . . 6 class 𝑥
76cuni 4912 . . . . 5 class 𝑥
8 cort 30959 . . . . 5 class
97, 8cfv 6563 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6563 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5231 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1537 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  31363
  Copyright terms: Public domain W3C validator