| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version | ||
| Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31339 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31268. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsup 30863 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30848 | . . . . 5 class ℋ | |
| 4 | 3 | cpw 4563 | . . . 4 class 𝒫 ℋ |
| 5 | 4 | cpw 4563 | . . 3 class 𝒫 𝒫 ℋ |
| 6 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 6 | cuni 4871 | . . . . 5 class ∪ 𝑥 |
| 8 | cort 30859 | . . . . 5 class ⊥ | |
| 9 | 7, 8 | cfv 6511 | . . . 4 class (⊥‘∪ 𝑥) |
| 10 | 9, 8 | cfv 6511 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) |
| 11 | 2, 5, 10 | cmpt 5188 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| 12 | 1, 11 | wceq 1540 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: hsupval 31263 |
| Copyright terms: Public domain | W3C validator |