HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 29246
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 29345 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 29274. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 28869 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 28854 . . . . 5 class
43cpw 4488 . . . 4 class 𝒫 ℋ
54cpw 4488 . . 3 class 𝒫 𝒫 ℋ
62cv 1541 . . . . . 6 class 𝑥
76cuni 4796 . . . . 5 class 𝑥
8 cort 28865 . . . . 5 class
97, 8cfv 6339 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6339 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5110 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1542 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  29269
  Copyright terms: Public domain W3C validator