| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version | ||
| Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31357 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31286. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsup 30881 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30866 | . . . . 5 class ℋ | |
| 4 | 3 | cpw 4580 | . . . 4 class 𝒫 ℋ |
| 5 | 4 | cpw 4580 | . . 3 class 𝒫 𝒫 ℋ |
| 6 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
| 7 | 6 | cuni 4887 | . . . . 5 class ∪ 𝑥 |
| 8 | cort 30877 | . . . . 5 class ⊥ | |
| 9 | 7, 8 | cfv 6541 | . . . 4 class (⊥‘∪ 𝑥) |
| 10 | 9, 8 | cfv 6541 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) |
| 11 | 2, 5, 10 | cmpt 5205 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| 12 | 1, 11 | wceq 1539 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: hsupval 31281 |
| Copyright terms: Public domain | W3C validator |