HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 31258
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31357 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31286. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30881 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30866 . . . . 5 class
43cpw 4580 . . . 4 class 𝒫 ℋ
54cpw 4580 . . 3 class 𝒫 𝒫 ℋ
62cv 1538 . . . . . 6 class 𝑥
76cuni 4887 . . . . 5 class 𝑥
8 cort 30877 . . . . 5 class
97, 8cfv 6541 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6541 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5205 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1539 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  31281
  Copyright terms: Public domain W3C validator