HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 30564
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 30663 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 30592. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30187 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30172 . . . . 5 class
43cpw 4603 . . . 4 class 𝒫 ℋ
54cpw 4603 . . 3 class 𝒫 𝒫 ℋ
62cv 1541 . . . . . 6 class 𝑥
76cuni 4909 . . . . 5 class 𝑥
8 cort 30183 . . . . 5 class
97, 8cfv 6544 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6544 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5232 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1542 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  30587
  Copyright terms: Public domain W3C validator