Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version |
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 29817 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 29746. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsup 29341 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 29326 | . . . . 5 class ℋ | |
4 | 3 | cpw 4539 | . . . 4 class 𝒫 ℋ |
5 | 4 | cpw 4539 | . . 3 class 𝒫 𝒫 ℋ |
6 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
7 | 6 | cuni 4844 | . . . . 5 class ∪ 𝑥 |
8 | cort 29337 | . . . . 5 class ⊥ | |
9 | 7, 8 | cfv 6458 | . . . 4 class (⊥‘∪ 𝑥) |
10 | 9, 8 | cfv 6458 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) |
11 | 2, 5, 10 | cmpt 5164 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
12 | 1, 11 | wceq 1539 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: hsupval 29741 |
Copyright terms: Public domain | W3C validator |