HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 31273
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31372 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31301. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30896 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30881 . . . . 5 class
43cpw 4553 . . . 4 class 𝒫 ℋ
54cpw 4553 . . 3 class 𝒫 𝒫 ℋ
62cv 1539 . . . . . 6 class 𝑥
76cuni 4861 . . . . 5 class 𝑥
8 cort 30892 . . . . 5 class
97, 8cfv 6486 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6486 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5176 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1540 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  31296
  Copyright terms: Public domain W3C validator