HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 29652
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 29751 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 29680. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 29275 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 29260 . . . . 5 class
43cpw 4538 . . . 4 class 𝒫 ℋ
54cpw 4538 . . 3 class 𝒫 𝒫 ℋ
62cv 1540 . . . . . 6 class 𝑥
76cuni 4844 . . . . 5 class 𝑥
8 cort 29271 . . . . 5 class
97, 8cfv 6430 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6430 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5161 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1541 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  29675
  Copyright terms: Public domain W3C validator