HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chsup Structured version   Visualization version   GIF version

Definition df-chsup 31343
Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31442 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice C, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31371. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.)
Assertion
Ref Expression
df-chsup = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))

Detailed syntax breakdown of Definition df-chsup
StepHypRef Expression
1 chsup 30966 . 2 class
2 vx . . 3 setvar 𝑥
3 chba 30951 . . . . 5 class
43cpw 4622 . . . 4 class 𝒫 ℋ
54cpw 4622 . . 3 class 𝒫 𝒫 ℋ
62cv 1536 . . . . . 6 class 𝑥
76cuni 4931 . . . . 5 class 𝑥
8 cort 30962 . . . . 5 class
97, 8cfv 6573 . . . 4 class (⊥‘ 𝑥)
109, 8cfv 6573 . . 3 class (⊥‘(⊥‘ 𝑥))
112, 5, 10cmpt 5249 . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
121, 11wceq 1537 1 wff = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  hsupval  31366
  Copyright terms: Public domain W3C validator