| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version | ||
| Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31392 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31321. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsup 30916 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30901 | . . . . 5 class ℋ | |
| 4 | 3 | cpw 4549 | . . . 4 class 𝒫 ℋ |
| 5 | 4 | cpw 4549 | . . 3 class 𝒫 𝒫 ℋ |
| 6 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 7 | 6 | cuni 4858 | . . . . 5 class ∪ 𝑥 |
| 8 | cort 30912 | . . . . 5 class ⊥ | |
| 9 | 7, 8 | cfv 6486 | . . . 4 class (⊥‘∪ 𝑥) |
| 10 | 9, 8 | cfv 6486 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) |
| 11 | 2, 5, 10 | cmpt 5174 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| 12 | 1, 11 | wceq 1541 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: hsupval 31316 |
| Copyright terms: Public domain | W3C validator |