|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version GIF version | ||
| Description: Define the supremum of a set of Hilbert lattice elements. See chsupval2 31430 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31359. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| df-chsup | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chsup 30954 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30939 | . . . . 5 class ℋ | |
| 4 | 3 | cpw 4599 | . . . 4 class 𝒫 ℋ | 
| 5 | 4 | cpw 4599 | . . 3 class 𝒫 𝒫 ℋ | 
| 6 | 2 | cv 1538 | . . . . . 6 class 𝑥 | 
| 7 | 6 | cuni 4906 | . . . . 5 class ∪ 𝑥 | 
| 8 | cort 30950 | . . . . 5 class ⊥ | |
| 9 | 7, 8 | cfv 6560 | . . . 4 class (⊥‘∪ 𝑥) | 
| 10 | 9, 8 | cfv 6560 | . . 3 class (⊥‘(⊥‘∪ 𝑥)) | 
| 11 | 2, 5, 10 | cmpt 5224 | . 2 class (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | 
| 12 | 1, 11 | wceq 1539 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: hsupval 31354 | 
| Copyright terms: Public domain | W3C validator |