| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsval | Structured version Visualization version GIF version | ||
| Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shsval | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq12 5644 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 × 𝑦) = (𝐴 × 𝐵)) | |
| 2 | 1 | imaeq2d 6011 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ( +ℎ “ (𝑥 × 𝑦)) = ( +ℎ “ (𝐴 × 𝐵))) |
| 3 | df-shs 31252 | . 2 ⊢ +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) | |
| 4 | hilablo 31104 | . . 3 ⊢ +ℎ ∈ AbelOp | |
| 5 | imaexg 7846 | . . 3 ⊢ ( +ℎ ∈ AbelOp → ( +ℎ “ (𝐴 × 𝐵)) ∈ V) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ( +ℎ “ (𝐴 × 𝐵)) ∈ V |
| 7 | 2, 3, 6 | ovmpoa 7504 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 × cxp 5617 “ cima 5622 (class class class)co 7349 AbelOpcablo 30488 +ℎ cva 30864 Sℋ csh 30872 +ℋ cph 30875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvdistr2 30953 ax-hvmul0 30954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-grpo 30437 df-ablo 30489 df-hvsub 30915 df-shs 31252 |
| This theorem is referenced by: shsss 31257 shsel 31258 |
| Copyright terms: Public domain | W3C validator |