![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsval | Structured version Visualization version GIF version |
Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsval | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq12 5703 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 × 𝑦) = (𝐴 × 𝐵)) | |
2 | 1 | imaeq2d 6064 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ( +ℎ “ (𝑥 × 𝑦)) = ( +ℎ “ (𝐴 × 𝐵))) |
3 | df-shs 31190 | . 2 ⊢ +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) | |
4 | hilablo 31042 | . . 3 ⊢ +ℎ ∈ AbelOp | |
5 | imaexg 7921 | . . 3 ⊢ ( +ℎ ∈ AbelOp → ( +ℎ “ (𝐴 × 𝐵)) ∈ V) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ( +ℎ “ (𝐴 × 𝐵)) ∈ V |
7 | 2, 3, 6 | ovmpoa 7576 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 × cxp 5676 “ cima 5681 (class class class)co 7419 AbelOpcablo 30426 +ℎ cva 30802 Sℋ csh 30810 +ℋ cph 30813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-hilex 30881 ax-hfvadd 30882 ax-hvcom 30883 ax-hvass 30884 ax-hv0cl 30885 ax-hvaddid 30886 ax-hfvmul 30887 ax-hvmulid 30888 ax-hvdistr2 30891 ax-hvmul0 30892 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-ltxr 11285 df-sub 11478 df-neg 11479 df-grpo 30375 df-ablo 30427 df-hvsub 30853 df-shs 31190 |
This theorem is referenced by: shsss 31195 shsel 31196 |
Copyright terms: Public domain | W3C validator |