![]() |
Metamath
Proof Explorer Theorem List (p. 309 of 478) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30149) |
![]() (30150-31672) |
![]() (31673-47754) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | spansneleq 30801 | Membership relation that implies equality of spans. (Contributed by NM, 6-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ∈ (span‘{𝐵}) → (span‘{𝐴}) = (span‘{𝐵}))) | ||
Theorem | spansnss 30802 | The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 5-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴) → (span‘{𝐵}) ⊆ 𝐴) | ||
Theorem | elspansn3 30803 | A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 16-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ (span‘{𝐵})) → 𝐶 ∈ 𝐴) | ||
Theorem | elspansn4 30804 | A span membership condition implying two vectors belong to the same subspace. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ (span‘{𝐵}) ∧ 𝐶 ≠ 0ℎ)) → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | ||
Theorem | elspansn5 30805 | A vector belonging to both a subspace and the span of the singleton of a vector not in it must be zero. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Sℋ → (((𝐵 ∈ ℋ ∧ ¬ 𝐵 ∈ 𝐴) ∧ (𝐶 ∈ (span‘{𝐵}) ∧ 𝐶 ∈ 𝐴)) → 𝐶 = 0ℎ)) | ||
Theorem | spansnss2 30806 | The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 16-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ∈ 𝐴 ↔ (span‘{𝐵}) ⊆ 𝐴)) | ||
Theorem | normcan 30807 | Cancellation-type law that "extracts" a vector 𝐴 from its inner product with a proportional vector 𝐵. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ∧ 𝐴 ∈ (span‘{𝐵})) → (((𝐴 ·ih 𝐵) / ((normℎ‘𝐵)↑2)) ·ℎ 𝐵) = 𝐴) | ||
Theorem | pjspansn 30808 | A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → ((projℎ‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ·ℎ 𝐴)) | ||
Theorem | spansnpji 30809 | A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ 𝐴 ⊆ (⊥‘(span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) | ||
Theorem | spanunsni 30810 | The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) | ||
Theorem | spanpr 30811 | The span of a pair of vectors. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (span‘{(𝐴 +ℎ 𝐵)}) ⊆ (span‘{𝐴, 𝐵})) | ||
Theorem | h1datomi 30812 | A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0ℋ)) | ||
Theorem | h1datom 30813 | A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0ℋ))) | ||
Definition | df-cm 30814* | Define the commutes relation (on the Hilbert lattice). Definition of commutes in [Kalmbach] p. 20, who uses the notation xCy for "x commutes with y." See cmbri 30821 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐶ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} | ||
Theorem | cmbr 30815 | Binary relation expressing 𝐴 commutes with 𝐵. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | ||
Theorem | pjoml2i 30816 | Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) | ||
Theorem | pjoml3i 30817 | Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵) | ||
Theorem | pjoml4i 30818 | Variation of orthomodular law. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) = (𝐴 ∨ℋ 𝐵) | ||
Theorem | pjoml5i 30819 | The orthomodular law. Remark in [Kalmbach] p. 22. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵) | ||
Theorem | pjoml6i 30820* | An equivalent of the orthomodular law. Theorem 29.13(e) of [MaedaMaeda] p. 132. (Contributed by NM, 30-May-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → ∃𝑥 ∈ Cℋ (𝐴 ⊆ (⊥‘𝑥) ∧ (𝐴 ∨ℋ 𝑥) = 𝐵)) | ||
Theorem | cmbri 30821 | Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) | ||
Theorem | cmcmlem 30822 | Commutation is symmetric. Theorem 3.4 of [Beran] p. 45. (Contributed by NM, 3-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) | ||
Theorem | cmcmi 30823 | Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴) | ||
Theorem | cmcm2i 30824 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ (⊥‘𝐵)) | ||
Theorem | cmcm3i 30825 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (⊥‘𝐴) 𝐶ℋ 𝐵) | ||
Theorem | cmcm4i 30826 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (⊥‘𝐴) 𝐶ℋ (⊥‘𝐵)) | ||
Theorem | cmbr2i 30827 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ (⊥‘𝐵)))) | ||
Theorem | cmcmii 30828 | Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 ⇒ ⊢ 𝐵 𝐶ℋ 𝐴 | ||
Theorem | cmcm2ii 30829 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 ⇒ ⊢ 𝐴 𝐶ℋ (⊥‘𝐵) | ||
Theorem | cmcm3ii 30830 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 ⇒ ⊢ (⊥‘𝐴) 𝐶ℋ 𝐵 | ||
Theorem | cmbr3i 30831 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵)) | ||
Theorem | cmbr4i 30832 | Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ⊆ 𝐵) | ||
Theorem | lecmi 30833 | Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 𝐶ℋ 𝐵) | ||
Theorem | lecmii 30834 | Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 𝐶ℋ 𝐵 | ||
Theorem | cmj1i 30835 | A Hilbert lattice element commutes with its join. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐴 𝐶ℋ (𝐴 ∨ℋ 𝐵) | ||
Theorem | cmj2i 30836 | A Hilbert lattice element commutes with its join. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐵 𝐶ℋ (𝐴 ∨ℋ 𝐵) | ||
Theorem | cmm1i 30837 | A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐴 𝐶ℋ (𝐴 ∩ 𝐵) | ||
Theorem | cmm2i 30838 | A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐵 𝐶ℋ (𝐴 ∩ 𝐵) | ||
Theorem | cmbr3 30839 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵))) | ||
Theorem | cm0 30840 | The zero Hilbert lattice element commutes with every element. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → 0ℋ 𝐶ℋ 𝐴) | ||
Theorem | cmidi 30841 | The commutes relation is reflexive. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝐶ℋ 𝐴 | ||
Theorem | pjoml2 30842 | Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) | ||
Theorem | pjoml3 30843 | Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⊆ 𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵)) | ||
Theorem | pjoml5 30844 | The orthomodular law. Remark in [Kalmbach] p. 22. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | cmcm 30845 | Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴)) | ||
Theorem | cmcm3 30846 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ (⊥‘𝐴) 𝐶ℋ 𝐵)) | ||
Theorem | cmcm2 30847 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ (⊥‘𝐵))) | ||
Theorem | lecm 30848 | Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝐶ℋ 𝐵) | ||
Theorem | fh1 30849 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝐶ℋ 𝐵 ∧ 𝐴 𝐶ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶))) | ||
Theorem | fh2 30850 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝐶ℋ 𝐴 ∧ 𝐵 𝐶ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶))) | ||
Theorem | cm2j 30851 | A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝐶ℋ 𝐵 ∧ 𝐴 𝐶ℋ 𝐶)) → 𝐴 𝐶ℋ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | fh1i 30852 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶)) | ||
Theorem | fh2i 30853 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐵 ∩ (𝐴 ∨ℋ 𝐶)) = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ 𝐶)) | ||
Theorem | fh3i 30854 | Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) | ||
Theorem | fh4i 30855 | Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐵 ∨ℋ (𝐴 ∩ 𝐶)) = ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | cm2ji 30856 | A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 11-May-2009.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ 𝐴 𝐶ℋ (𝐵 ∨ℋ 𝐶) | ||
Theorem | cm2mi 30857 | A lattice element that commutes with two others also commutes with their meet. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 11-May-2009.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ 𝐴 𝐶ℋ (𝐵 ∩ 𝐶) | ||
Theorem | qlax1i 30858 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 = (⊥‘(⊥‘𝐴)) | ||
Theorem | qlax2i 30859 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) | ||
Theorem | qlax3i 30860 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-3" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 ∨ℋ 𝐵) ∨ℋ 𝐶) = (𝐴 ∨ℋ (𝐵 ∨ℋ 𝐶)) | ||
Theorem | qlax4i 30861 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (𝐵 ∨ℋ (⊥‘𝐵))) = (𝐵 ∨ℋ (⊥‘𝐵)) | ||
Theorem | qlax5i 30862 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) = 𝐴 | ||
Theorem | qlaxr1i 30863 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 = 𝐴 | ||
Theorem | qlaxr2i 30864 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 = 𝐶 | ||
Theorem | qlaxr4i 30865 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (⊥‘𝐴) = (⊥‘𝐵) | ||
Theorem | qlaxr5i 30866 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) | ||
Theorem | qlaxr3i 30867 | A variation of the orthomodular law, showing Cℋ is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ (𝐶 ∨ℋ (⊥‘𝐶)) = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | chscllem1 30868* | Lemma for chscl 30872. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) | ||
Theorem | chscllem2 30869* | Lemma for chscl 30872. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑣 ) | ||
Theorem | chscllem3 30870* | Lemma for chscl 30872. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → (𝐻‘𝑁) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑁)) | ||
Theorem | chscllem4 30871* | Lemma for chscl 30872. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐵)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝑢 ∈ (𝐴 +ℋ 𝐵)) | ||
Theorem | chscl 30872 | The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) ⇒ ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ∈ Cℋ ) | ||
Theorem | osumi 30873 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. Note that the (countable) Axiom of Choice is used for this proof via pjhth 30624, although "the hard part" of this proof, chscl 30872, requires no choice. (Contributed by NM, 28-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | osumcori 30874 | Corollary of osumi 30873. (Contributed by NM, 5-Nov-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) +ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) | ||
Theorem | osumcor2i 30875 | Corollary of osumi 30873, showing it holds under the weaker hypothesis that 𝐴 and 𝐵 commute. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | osum 30876 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. (Contributed by NM, 31-Oct-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | spansnji 30877 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) | ||
Theorem | spansnj 30878 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵}))) | ||
Theorem | spansnscl 30879 | The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) ∈ Cℋ ) | ||
Theorem | sumspansn 30880 | The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | ||
Theorem | spansnm0i 30881 | The meet of different one-dimensional subspaces is the zero subspace. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (¬ 𝐴 ∈ (span‘{𝐵}) → ((span‘{𝐴}) ∩ (span‘{𝐵})) = 0ℋ) | ||
Theorem | nonbooli 30882 | A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐹 = (span‘{𝐴}) & ⊢ 𝐺 = (span‘{𝐵}) & ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) ⇒ ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | ||
Theorem | spansncvi 30883 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶}))) | ||
Theorem | spansncv 30884 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶})))) | ||
Theorem | 5oalem1 30885 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) | ||
Theorem | 5oalem2 30886 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑥 +ℎ 𝑦) = (𝑧 +ℎ 𝑤)) → (𝑥 −ℎ 𝑧) ∈ ((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷))) | ||
Theorem | 5oalem3 30887 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)))) | ||
Theorem | 5oalem4 30888 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺))))) | ||
Theorem | 5oalem5 30889 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ (𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆))) ∧ (((𝑥 +ℎ 𝑦) = (𝑣 +ℎ 𝑢) ∧ (𝑧 +ℎ 𝑤) = (𝑣 +ℎ 𝑢)) ∧ (𝑓 +ℎ 𝑔) = (𝑣 +ℎ 𝑢))) → (𝑥 −ℎ 𝑧) ∈ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))) | ||
Theorem | 5oalem6 30890 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ℎ = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) ∧ ℎ = (𝑧 +ℎ 𝑤))) ∧ (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ ℎ = (𝑓 +ℎ 𝑔)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆) ∧ ℎ = (𝑣 +ℎ 𝑢)))) → ℎ ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))))))))) | ||
Theorem | 5oalem7 30891 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) TODO: replace uses of ee4anv 2348 with 4exdistrv 1961 as in 3oalem3 30895. (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) ∩ (𝐶 +ℋ 𝐷)) ∩ ((𝐹 +ℋ 𝐺) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))))) | ||
Theorem | 5oai 30892 | Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑅 ⊆ (⊥‘𝑆) ⇒ ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ ((𝐹 ∨ℋ 𝐺) ∩ (𝑅 ∨ℋ 𝑆))) ⊆ (𝐵 ∨ℋ (𝐴 ∩ (𝐶 ∨ℋ ((((𝐴 ∨ℋ 𝐶) ∩ (𝐵 ∨ℋ 𝐷)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)))) ∩ ((((𝐴 ∨ℋ 𝐹) ∩ (𝐵 ∨ℋ 𝐺)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆)))) ∨ℋ (((𝐶 ∨ℋ 𝐹) ∩ (𝐷 ∨ℋ 𝐺)) ∩ (((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆))))))))) | ||
Theorem | 3oalem1 30893* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) | ||
Theorem | 3oalem2 30894* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) | ||
Theorem | 3oalem3 30895 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) | ||
Theorem | 3oalem4 30896 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⇒ ⊢ 𝑅 ⊆ (⊥‘𝐵) | ||
Theorem | 3oalem5 30897 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) = ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) | ||
Theorem | 3oalem6 30898 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
Theorem | 3oai 30899 | 3OA (weak) orthoarguesian law. Equation IV of [GodowskiGreechie] p. 249. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
Theorem | pjorthi 30900 | Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐻 ∈ Cℋ → (((projℎ‘𝐻)‘𝐴) ·ih ((projℎ‘(⊥‘𝐻))‘𝐵)) = 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |