![]() |
Metamath
Proof Explorer Theorem List (p. 309 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nmoreltpnf 30801 | The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) < +∞)) | ||
Theorem | nmogtmnf 30802 | The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) | ||
Theorem | nmoolb 30803 | A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) ∧ (𝐴 ∈ 𝑋 ∧ (𝐿‘𝐴) ≤ 1)) → (𝑀‘(𝑇‘𝐴)) ≤ (𝑁‘𝑇)) | ||
Theorem | nmoubi 30804* | An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
Theorem | nmoub3i 30805* | An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) → (𝑁‘𝑇) ≤ (abs‘𝐴)) | ||
Theorem | nmoub2i 30806* | An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) → (𝑁‘𝑇) ≤ 𝐴) | ||
Theorem | nmobndi 30807* | Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) | ||
Theorem | nmounbi 30808* | Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) | ||
Theorem | nmounbseqi 30809* | An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | ||
Theorem | nmounbseqiALT 30810* | Alternate shorter proof of nmounbseqi 30809 based on Axioms ax-reg 9661 and ax-ac2 10532 instead of ax-cc 10504. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | ||
Theorem | nmobndseqi 30811* | A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) | ||
Theorem | nmobndseqiALT 30812* | Alternate shorter proof of nmobndseqi 30811 based on Axioms ax-reg 9661 and ax-ac2 10532 instead of ax-cc 10504. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) | ||
Theorem | bloval 30813* | The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) | ||
Theorem | isblo 30814 | The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) | ||
Theorem | isblo2 30815 | The predicate "is a bounded linear operator." (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) ∈ ℝ))) | ||
Theorem | bloln 30816 | A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ 𝐿) | ||
Theorem | blof 30817 | A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) | ||
Theorem | nmblore 30818 | The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ) | ||
Theorem | 0ofval 30819 | The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑊) & ⊢ 𝑂 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) | ||
Theorem | 0oval 30820 | Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑊) & ⊢ 𝑂 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) | ||
Theorem | 0oo 30821 | The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) | ||
Theorem | 0lno 30822 | The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 ∈ 𝐿) | ||
Theorem | nmoo0 30823 | The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁‘𝑍) = 0) | ||
Theorem | 0blo 30824 | The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 ∈ 𝐵) | ||
Theorem | nmlno0lem 30825 | Lemma for nmlno0i 30826. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 & ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝑃 = (0vec‘𝑈) & ⊢ 𝑄 = (0vec‘𝑊) & ⊢ 𝐾 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) ⇒ ⊢ ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍) | ||
Theorem | nmlno0i 30826 | The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇 ∈ 𝐿 → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) | ||
Theorem | nmlno0 30827 | The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) | ||
Theorem | nmlnoubi 30828* | An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝐾 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) → (𝑁‘𝑇) ≤ 𝐴) | ||
Theorem | nmlnogt0 30829 | The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) | ||
Theorem | lnon0 30830* | The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑂 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) | ||
Theorem | nmblolbii 30831 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) | ||
Theorem | nmblolbi 30832 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) | ||
Theorem | isblo3i 30833* | The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = (normCV‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)))) | ||
Theorem | blo3i 30834* | Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = (normCV‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) | ||
Theorem | blometi 30835 | Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) ≤ ((𝑁‘𝑇) · (𝑃𝐶𝑄))) | ||
Theorem | blocnilem 30836 | Lemma for blocni 30837 and lnocni 30838. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 & ⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ 𝐵) | ||
Theorem | blocni 30837 | A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 ⇒ ⊢ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) | ||
Theorem | lnocni 30838 | If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 & ⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | blocn 30839 | A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (𝑇 ∈ 𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵)) | ||
Theorem | blocn2 30840 | A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇 ∈ 𝐵 → 𝑇 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | ajfval 30841* | The adjoint function. (Contributed by NM, 25-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑄 = (·𝑖OLD‘𝑊) & ⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}) | ||
Theorem | hmoval 30842* | The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (HmOp‘𝑈) & ⊢ 𝐴 = (𝑈adj𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) | ||
Theorem | ishmo 30843 | The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐻 = (HmOp‘𝑈) & ⊢ 𝐴 = (𝑈adj𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) | ||
Syntax | ccphlo 30844 | Extend class notation with the class of all complex inner product spaces (also called pre-Hilbert spaces). |
class CPreHilOLD | ||
Definition | df-ph 30845* | Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of [ReedSimon] p. 63. The vector operation is 𝑔, the scalar product is 𝑠, and the norm is 𝑛. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | ||
Theorem | phnv 30846 | Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | ||
Theorem | phrel 30847 | The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ Rel CPreHilOLD | ||
Theorem | phnvi 30848 | Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
Theorem | isphg 30849* | The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, and the norm is 𝑁. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) | ||
Theorem | phop 30850 | A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) | ||
Theorem | cncph 30851 | The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CPreHilOLD | ||
Theorem | elimph 30852 | Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 | ||
Theorem | elimphu 30853 | Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007.) (New usage is discouraged.) |
⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | ||
Theorem | isph 30854* | The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) | ||
Theorem | phpar2 30855 | The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | phpar 30856 | The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | ip0i 30857 | A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐽 ∈ ℂ ⇒ ⊢ ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) | ||
Theorem | ip1ilem 30858 | Lemma for ip1i 30859. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐽 ∈ ℂ ⇒ ⊢ (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶)) | ||
Theorem | ip1i 30859 | Equation 6.47 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 ⇒ ⊢ (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶)) | ||
Theorem | ip2i 30860 | Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) | ||
Theorem | ipdirilem 30861 | Lemma for ipdiri 30862. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 ⇒ ⊢ ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) | ||
Theorem | ipdiri 30862 | Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | ipasslem1 30863 | Lemma for ipassi 30873. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem2 30864 | Lemma for ipassi 30873. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem3 30865 | Lemma for ipassi 30873. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem4 30866 | Lemma for ipassi 30873. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem5 30867 | Lemma for ipassi 30873. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝐶 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem7 30868* | Lemma for ipassi 30873. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) | ||
Theorem | ipasslem8 30869* | Lemma for ipassi 30873. By ipasslem5 30867, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 24838, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ⇒ ⊢ 𝐹:ℝ⟶{0} | ||
Theorem | ipasslem9 30870 | Lemma for ipassi 30873. Conclude from ipasslem8 30869 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem10 30871 | Lemma for ipassi 30873. Show the inner product associative law for the imaginary number i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵)) | ||
Theorem | ipasslem11 30872 | Lemma for ipassi 30873. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
Theorem | ipassi 30873 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | dipdir 30874 | Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | dipdi 30875 | Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) | ||
Theorem | ip2dii 30876 | Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝐷 ∈ 𝑋 ⇒ ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) | ||
Theorem | dipass 30877 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | dipassr 30878 | "Associative" law for second argument of inner product (compare dipass 30877). (Contributed by NM, 22-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑆𝐶)) = ((∗‘𝐵) · (𝐴𝑃𝐶))) | ||
Theorem | dipassr2 30879 | "Associative" law for inner product. Conjugate version of dipassr 30878. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃((∗‘𝐵)𝑆𝐶)) = (𝐵 · (𝐴𝑃𝐶))) | ||
Theorem | dipsubdir 30880 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) | ||
Theorem | dipsubdi 30881 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) | ||
Theorem | pythi 30882 | The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) | ||
Theorem | siilem1 30883 | Lemma for sii 30886. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ & ⊢ 0 ≤ (𝐶 · (𝐴𝑃𝐵)) ⇒ ⊢ ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | siilem2 30884 | Lemma for sii 30886. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) | ||
Theorem | siii 30885 | Inference from sii 30886. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) | ||
Theorem | sii 30886 | Obsolete version of ipcau 25291 as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi 31152, bcsiALT 31211, bcsiHIL 31212, csbren 25452. (Contributed by NM, 12-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | ipblnfi 30887* | A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to ℂ. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐶 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑥𝑃𝐴)) ⇒ ⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵) | ||
Theorem | ip2eqi 30888* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | phoeqi 30889* | A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
Theorem | ajmoi 30890* | Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) | ||
Theorem | ajfuni 30891 | The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑈adj𝑊) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ Fun 𝐴 | ||
Theorem | ajfun 30892 | The adjoint function is a function. This is not immediately apparent from df-aj 30782 but results from the uniqueness shown by ajmoi 30890. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec) → Fun 𝐴) | ||
Theorem | ajval 30893* | Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑄 = (·𝑖OLD‘𝑊) & ⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝐴‘𝑇) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) | ||
Syntax | ccbn 30894 | Extend class notation with the class of all complex Banach spaces. |
class CBan | ||
Definition | df-cbn 30895 | Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006.) Use df-bn 25389 instead. (New usage is discouraged.) |
⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | ||
Theorem | iscbn 30896 | A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25391 instead. (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) | ||
Theorem | cbncms 30897 | The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25400 (or preferably bncms 25397) instead. (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | bnnv 30898 | Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25393 instead. (New usage is discouraged.) |
⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | ||
Theorem | bnrel 30899 | The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CBan | ||
Theorem | bnsscmcl 30900 | A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) ⇒ ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |