![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version |
Description: Define Hilbert lattice join. See chjval 31380 for its value and chjcl 31385 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31383. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chj 30961 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chba 30947 | . . . 4 class ℋ | |
5 | 4 | cpw 4604 | . . 3 class 𝒫 ℋ |
6 | 2 | cv 1535 | . . . . . 6 class 𝑥 |
7 | 3 | cv 1535 | . . . . . 6 class 𝑦 |
8 | 6, 7 | cun 3960 | . . . . 5 class (𝑥 ∪ 𝑦) |
9 | cort 30958 | . . . . 5 class ⊥ | |
10 | 8, 9 | cfv 6562 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
11 | 10, 9 | cfv 6562 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
12 | 2, 3, 5, 5, 11 | cmpo 7432 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
13 | 1, 12 | wceq 1536 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: sshjval 31378 |
Copyright terms: Public domain | W3C validator |