![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version |
Description: Define Hilbert lattice join. See chjval 28783 for its value and chjcl 28788 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 28786. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chj 28362 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chba 28348 | . . . 4 class ℋ | |
5 | 4 | cpw 4378 | . . 3 class 𝒫 ℋ |
6 | 2 | cv 1600 | . . . . . 6 class 𝑥 |
7 | 3 | cv 1600 | . . . . . 6 class 𝑦 |
8 | 6, 7 | cun 3789 | . . . . 5 class (𝑥 ∪ 𝑦) |
9 | cort 28359 | . . . . 5 class ⊥ | |
10 | 8, 9 | cfv 6135 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
11 | 10, 9 | cfv 6135 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
12 | 2, 3, 5, 5, 11 | cmpt2 6924 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
13 | 1, 12 | wceq 1601 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: sshjval 28781 |
Copyright terms: Public domain | W3C validator |