| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version | ||
| Description: Define Hilbert lattice join. See chjval 31332 for its value and chjcl 31337 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31335. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj 30913 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | chba 30899 | . . . 4 class ℋ | |
| 5 | 4 | cpw 4547 | . . 3 class 𝒫 ℋ |
| 6 | 2 | cv 1540 | . . . . . 6 class 𝑥 |
| 7 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 8 | 6, 7 | cun 3895 | . . . . 5 class (𝑥 ∪ 𝑦) |
| 9 | cort 30910 | . . . . 5 class ⊥ | |
| 10 | 8, 9 | cfv 6481 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
| 11 | 10, 9 | cfv 6481 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
| 12 | 2, 3, 5, 5, 11 | cmpo 7348 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| 13 | 1, 12 | wceq 1541 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sshjval 31330 |
| Copyright terms: Public domain | W3C validator |