![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version |
Description: Define Hilbert lattice join. See chjval 31234 for its value and chjcl 31239 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31237. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chj 30815 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chba 30801 | . . . 4 class ℋ | |
5 | 4 | cpw 4604 | . . 3 class 𝒫 ℋ |
6 | 2 | cv 1532 | . . . . . 6 class 𝑥 |
7 | 3 | cv 1532 | . . . . . 6 class 𝑦 |
8 | 6, 7 | cun 3942 | . . . . 5 class (𝑥 ∪ 𝑦) |
9 | cort 30812 | . . . . 5 class ⊥ | |
10 | 8, 9 | cfv 6549 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
11 | 10, 9 | cfv 6549 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
12 | 2, 3, 5, 5, 11 | cmpo 7421 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
13 | 1, 12 | wceq 1533 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: sshjval 31232 |
Copyright terms: Public domain | W3C validator |