![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version |
Description: Define Hilbert lattice join. See chjval 31384 for its value and chjcl 31389 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31387. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chj 30965 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chba 30951 | . . . 4 class ℋ | |
5 | 4 | cpw 4622 | . . 3 class 𝒫 ℋ |
6 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
7 | 3 | cv 1536 | . . . . . 6 class 𝑦 |
8 | 6, 7 | cun 3974 | . . . . 5 class (𝑥 ∪ 𝑦) |
9 | cort 30962 | . . . . 5 class ⊥ | |
10 | 8, 9 | cfv 6573 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
11 | 10, 9 | cfv 6573 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
12 | 2, 3, 5, 5, 11 | cmpo 7450 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
13 | 1, 12 | wceq 1537 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: sshjval 31382 |
Copyright terms: Public domain | W3C validator |