| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version | ||
| Description: Define Hilbert lattice join. See chjval 31338 for its value and chjcl 31343 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31341. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj 30919 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | chba 30905 | . . . 4 class ℋ | |
| 5 | 4 | cpw 4580 | . . 3 class 𝒫 ℋ |
| 6 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 8 | 6, 7 | cun 3929 | . . . . 5 class (𝑥 ∪ 𝑦) |
| 9 | cort 30916 | . . . . 5 class ⊥ | |
| 10 | 8, 9 | cfv 6536 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
| 11 | 10, 9 | cfv 6536 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
| 12 | 2, 3, 5, 5, 11 | cmpo 7412 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| 13 | 1, 12 | wceq 1540 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sshjval 31336 |
| Copyright terms: Public domain | W3C validator |