HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chj Structured version   Visualization version   GIF version

Definition df-chj 31254
Description: Define Hilbert lattice join. See chjval 31296 for its value and chjcl 31301 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to C; see sshjcl 31299. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-chj = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-chj
StepHypRef Expression
1 chj 30877 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30863 . . . 4 class
54cpw 4551 . . 3 class 𝒫 ℋ
62cv 1539 . . . . . 6 class 𝑥
73cv 1539 . . . . . 6 class 𝑦
86, 7cun 3901 . . . . 5 class (𝑥𝑦)
9 cort 30874 . . . . 5 class
108, 9cfv 6482 . . . 4 class (⊥‘(𝑥𝑦))
1110, 9cfv 6482 . . 3 class (⊥‘(⊥‘(𝑥𝑦)))
122, 3, 5, 5, 11cmpo 7351 . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
131, 12wceq 1540 1 wff = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  sshjval  31294
  Copyright terms: Public domain W3C validator