| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version | ||
| Description: Define Hilbert lattice join. See chjval 31318 for its value and chjcl 31323 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31321. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj 30899 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | chba 30885 | . . . 4 class ℋ | |
| 5 | 4 | cpw 4582 | . . 3 class 𝒫 ℋ |
| 6 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
| 7 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
| 8 | 6, 7 | cun 3931 | . . . . 5 class (𝑥 ∪ 𝑦) |
| 9 | cort 30896 | . . . . 5 class ⊥ | |
| 10 | 8, 9 | cfv 6542 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
| 11 | 10, 9 | cfv 6542 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
| 12 | 2, 3, 5, 5, 11 | cmpo 7416 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| 13 | 1, 12 | wceq 1539 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sshjval 31316 |
| Copyright terms: Public domain | W3C validator |