| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version | ||
| Description: Define Hilbert lattice join. See chjval 31331 for its value and chjcl 31336 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31334. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj 30912 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | chba 30898 | . . . 4 class ℋ | |
| 5 | 4 | cpw 4559 | . . 3 class 𝒫 ℋ |
| 6 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 8 | 6, 7 | cun 3909 | . . . . 5 class (𝑥 ∪ 𝑦) |
| 9 | cort 30909 | . . . . 5 class ⊥ | |
| 10 | 8, 9 | cfv 6499 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
| 11 | 10, 9 | cfv 6499 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
| 12 | 2, 3, 5, 5, 11 | cmpo 7371 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| 13 | 1, 12 | wceq 1540 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sshjval 31329 |
| Copyright terms: Public domain | W3C validator |