HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chj Structured version   Visualization version   GIF version

Definition df-chj 31276
Description: Define Hilbert lattice join. See chjval 31318 for its value and chjcl 31323 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to C; see sshjcl 31321. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-chj = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-chj
StepHypRef Expression
1 chj 30899 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30885 . . . 4 class
54cpw 4582 . . 3 class 𝒫 ℋ
62cv 1538 . . . . . 6 class 𝑥
73cv 1538 . . . . . 6 class 𝑦
86, 7cun 3931 . . . . 5 class (𝑥𝑦)
9 cort 30896 . . . . 5 class
108, 9cfv 6542 . . . 4 class (⊥‘(𝑥𝑦))
1110, 9cfv 6542 . . 3 class (⊥‘(⊥‘(𝑥𝑦)))
122, 3, 5, 5, 11cmpo 7416 . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
131, 12wceq 1539 1 wff = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  sshjval  31316
  Copyright terms: Public domain W3C validator