![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version |
Description: Define Hilbert lattice join. See chjval 30605 for its value and chjcl 30610 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 30608. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chj 30186 | . 2 class ∨ℋ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chba 30172 | . . . 4 class ℋ | |
5 | 4 | cpw 4603 | . . 3 class 𝒫 ℋ |
6 | 2 | cv 1541 | . . . . . 6 class 𝑥 |
7 | 3 | cv 1541 | . . . . . 6 class 𝑦 |
8 | 6, 7 | cun 3947 | . . . . 5 class (𝑥 ∪ 𝑦) |
9 | cort 30183 | . . . . 5 class ⊥ | |
10 | 8, 9 | cfv 6544 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
11 | 10, 9 | cfv 6544 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
12 | 2, 3, 5, 5, 11 | cmpo 7411 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
13 | 1, 12 | wceq 1542 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
This definition is referenced by: sshjval 30603 |
Copyright terms: Public domain | W3C validator |