HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chj Structured version   Visualization version   GIF version

Definition df-chj 30563
Description: Define Hilbert lattice join. See chjval 30605 for its value and chjcl 30610 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to C; see sshjcl 30608. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-chj = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-chj
StepHypRef Expression
1 chj 30186 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30172 . . . 4 class
54cpw 4603 . . 3 class 𝒫 ℋ
62cv 1541 . . . . . 6 class 𝑥
73cv 1541 . . . . . 6 class 𝑦
86, 7cun 3947 . . . . 5 class (𝑥𝑦)
9 cort 30183 . . . . 5 class
108, 9cfv 6544 . . . 4 class (⊥‘(𝑥𝑦))
1110, 9cfv 6544 . . 3 class (⊥‘(⊥‘(𝑥𝑦)))
122, 3, 5, 5, 11cmpo 7411 . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
131, 12wceq 1542 1 wff = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  sshjval  30603
  Copyright terms: Public domain W3C validator