HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chj Structured version   Visualization version   GIF version

Definition df-chj 31342
Description: Define Hilbert lattice join. See chjval 31384 for its value and chjcl 31389 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to C; see sshjcl 31387. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-chj = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-chj
StepHypRef Expression
1 chj 30965 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30951 . . . 4 class
54cpw 4622 . . 3 class 𝒫 ℋ
62cv 1536 . . . . . 6 class 𝑥
73cv 1536 . . . . . 6 class 𝑦
86, 7cun 3974 . . . . 5 class (𝑥𝑦)
9 cort 30962 . . . . 5 class
108, 9cfv 6573 . . . 4 class (⊥‘(𝑥𝑦))
1110, 9cfv 6573 . . 3 class (⊥‘(⊥‘(𝑥𝑦)))
122, 3, 5, 5, 11cmpo 7450 . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
131, 12wceq 1537 1 wff = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  sshjval  31382
  Copyright terms: Public domain W3C validator