HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-chj Structured version   Visualization version   GIF version

Definition df-chj 31239
Description: Define Hilbert lattice join. See chjval 31281 for its value and chjcl 31286 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to C; see sshjcl 31284. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-chj = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-chj
StepHypRef Expression
1 chj 30862 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30848 . . . 4 class
54cpw 4563 . . 3 class 𝒫 ℋ
62cv 1539 . . . . . 6 class 𝑥
73cv 1539 . . . . . 6 class 𝑦
86, 7cun 3912 . . . . 5 class (𝑥𝑦)
9 cort 30859 . . . . 5 class
108, 9cfv 6511 . . . 4 class (⊥‘(𝑥𝑦))
1110, 9cfv 6511 . . 3 class (⊥‘(⊥‘(𝑥𝑦)))
122, 3, 5, 5, 11cmpo 7389 . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
131, 12wceq 1540 1 wff = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  sshjval  31279
  Copyright terms: Public domain W3C validator