| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-chj | Structured version Visualization version GIF version | ||
| Description: Define Hilbert lattice join. See chjval 31254 for its value and chjcl 31259 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31257. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-chj | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj 30835 | . 2 class ∨ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | chba 30821 | . . . 4 class ℋ | |
| 5 | 4 | cpw 4559 | . . 3 class 𝒫 ℋ |
| 6 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 8 | 6, 7 | cun 3909 | . . . . 5 class (𝑥 ∪ 𝑦) |
| 9 | cort 30832 | . . . . 5 class ⊥ | |
| 10 | 8, 9 | cfv 6499 | . . . 4 class (⊥‘(𝑥 ∪ 𝑦)) |
| 11 | 10, 9 | cfv 6499 | . . 3 class (⊥‘(⊥‘(𝑥 ∪ 𝑦))) |
| 12 | 2, 3, 5, 5, 11 | cmpo 7371 | . 2 class (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| 13 | 1, 12 | wceq 1540 | 1 wff ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sshjval 31252 |
| Copyright terms: Public domain | W3C validator |