HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsupval Structured version   Visualization version   GIF version

Theorem hsupval 31236
Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31311. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hsupval (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))

Proof of Theorem hsupval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30901 . . . 4 ℋ ∈ V
21pwex 5330 . . 3 𝒫 ℋ ∈ V
32elpw2 5284 . 2 (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ)
4 unieq 4878 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
54fveq2d 6844 . . . 4 (𝑥 = 𝐴 → (⊥‘ 𝑥) = (⊥‘ 𝐴))
65fveq2d 6844 . . 3 (𝑥 = 𝐴 → (⊥‘(⊥‘ 𝑥)) = (⊥‘(⊥‘ 𝐴)))
7 df-chsup 31213 . . 3 = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
8 fvex 6853 . . 3 (⊥‘(⊥‘ 𝐴)) ∈ V
96, 7, 8fvmpt 6950 . 2 (𝐴 ∈ 𝒫 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
103, 9sylbir 235 1 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867  cfv 6499  chba 30821  cort 30832   chsup 30836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-chsup 31213
This theorem is referenced by:  chsupval  31237  hsupcl  31241  hsupss  31243  hsupunss  31245  sshjval3  31256  hsupval2  31311
  Copyright terms: Public domain W3C validator