| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hsupval | Structured version Visualization version GIF version | ||
| Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31372. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hsupval | ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30962 | . . . 4 ⊢ ℋ ∈ V | |
| 2 | 1 | pwex 5322 | . . 3 ⊢ 𝒫 ℋ ∈ V |
| 3 | 2 | elpw2 5276 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ) |
| 4 | unieq 4872 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 5 | 4 | fveq2d 6830 | . . . 4 ⊢ (𝑥 = 𝐴 → (⊥‘∪ 𝑥) = (⊥‘∪ 𝐴)) |
| 6 | 5 | fveq2d 6830 | . . 3 ⊢ (𝑥 = 𝐴 → (⊥‘(⊥‘∪ 𝑥)) = (⊥‘(⊥‘∪ 𝐴))) |
| 7 | df-chsup 31274 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | |
| 8 | fvex 6839 | . . 3 ⊢ (⊥‘(⊥‘∪ 𝐴)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6934 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| 10 | 3, 9 | sylbir 235 | 1 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ‘cfv 6486 ℋchba 30882 ⊥cort 30893 ∨ℋ chsup 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-hilex 30962 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-chsup 31274 |
| This theorem is referenced by: chsupval 31298 hsupcl 31302 hsupss 31304 hsupunss 31306 sshjval3 31317 hsupval2 31372 |
| Copyright terms: Public domain | W3C validator |