| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hsupval | Structured version Visualization version GIF version | ||
| Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31389. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hsupval | ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30979 | . . . 4 ⊢ ℋ ∈ V | |
| 2 | 1 | pwex 5316 | . . 3 ⊢ 𝒫 ℋ ∈ V |
| 3 | 2 | elpw2 5270 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ) |
| 4 | unieq 4867 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 5 | 4 | fveq2d 6826 | . . . 4 ⊢ (𝑥 = 𝐴 → (⊥‘∪ 𝑥) = (⊥‘∪ 𝐴)) |
| 6 | 5 | fveq2d 6826 | . . 3 ⊢ (𝑥 = 𝐴 → (⊥‘(⊥‘∪ 𝑥)) = (⊥‘(⊥‘∪ 𝐴))) |
| 7 | df-chsup 31291 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | |
| 8 | fvex 6835 | . . 3 ⊢ (⊥‘(⊥‘∪ 𝐴)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| 10 | 3, 9 | sylbir 235 | 1 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 ‘cfv 6481 ℋchba 30899 ⊥cort 30910 ∨ℋ chsup 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-chsup 31291 |
| This theorem is referenced by: chsupval 31315 hsupcl 31319 hsupss 31321 hsupunss 31323 sshjval3 31334 hsupval2 31389 |
| Copyright terms: Public domain | W3C validator |