HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsupval Structured version   Visualization version   GIF version

Theorem hsupval 31379
Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31454. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hsupval (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))

Proof of Theorem hsupval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 31044 . . . 4 ℋ ∈ V
21pwex 5389 . . 3 𝒫 ℋ ∈ V
32elpw2 5343 . 2 (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ)
4 unieq 4926 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
54fveq2d 6918 . . . 4 (𝑥 = 𝐴 → (⊥‘ 𝑥) = (⊥‘ 𝐴))
65fveq2d 6918 . . 3 (𝑥 = 𝐴 → (⊥‘(⊥‘ 𝑥)) = (⊥‘(⊥‘ 𝐴)))
7 df-chsup 31356 . . 3 = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
8 fvex 6927 . . 3 (⊥‘(⊥‘ 𝐴)) ∈ V
96, 7, 8fvmpt 7023 . 2 (𝐴 ∈ 𝒫 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
103, 9sylbir 235 1 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3966  𝒫 cpw 4608   cuni 4915  cfv 6569  chba 30964  cort 30975   chsup 30979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-hilex 31044
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-chsup 31356
This theorem is referenced by:  chsupval  31380  hsupcl  31384  hsupss  31386  hsupunss  31388  sshjval3  31399  hsupval2  31454
  Copyright terms: Public domain W3C validator