HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsupval Structured version   Visualization version   GIF version

Theorem hsupval 31314
Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31389. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hsupval (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))

Proof of Theorem hsupval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30979 . . . 4 ℋ ∈ V
21pwex 5316 . . 3 𝒫 ℋ ∈ V
32elpw2 5270 . 2 (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ)
4 unieq 4867 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
54fveq2d 6826 . . . 4 (𝑥 = 𝐴 → (⊥‘ 𝑥) = (⊥‘ 𝐴))
65fveq2d 6826 . . 3 (𝑥 = 𝐴 → (⊥‘(⊥‘ 𝑥)) = (⊥‘(⊥‘ 𝐴)))
7 df-chsup 31291 . . 3 = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
8 fvex 6835 . . 3 (⊥‘(⊥‘ 𝐴)) ∈ V
96, 7, 8fvmpt 6929 . 2 (𝐴 ∈ 𝒫 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
103, 9sylbir 235 1 (𝐴 ⊆ 𝒫 ℋ → ( 𝐴) = (⊥‘(⊥‘ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4547   cuni 4856  cfv 6481  chba 30899  cort 30910   chsup 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-hilex 30979
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-chsup 31291
This theorem is referenced by:  chsupval  31315  hsupcl  31319  hsupss  31321  hsupunss  31323  sshjval3  31334  hsupval2  31389
  Copyright terms: Public domain W3C validator