Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hsupval | Structured version Visualization version GIF version |
Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 29672. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsupval | ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 29262 | . . . 4 ⊢ ℋ ∈ V | |
2 | 1 | pwex 5298 | . . 3 ⊢ 𝒫 ℋ ∈ V |
3 | 2 | elpw2 5264 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ) |
4 | unieq 4847 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
5 | 4 | fveq2d 6760 | . . . 4 ⊢ (𝑥 = 𝐴 → (⊥‘∪ 𝑥) = (⊥‘∪ 𝐴)) |
6 | 5 | fveq2d 6760 | . . 3 ⊢ (𝑥 = 𝐴 → (⊥‘(⊥‘∪ 𝑥)) = (⊥‘(⊥‘∪ 𝐴))) |
7 | df-chsup 29574 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | |
8 | fvex 6769 | . . 3 ⊢ (⊥‘(⊥‘∪ 𝐴)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6857 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
10 | 3, 9 | sylbir 234 | 1 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 ℋchba 29182 ⊥cort 29193 ∨ℋ chsup 29197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-chsup 29574 |
This theorem is referenced by: chsupval 29598 hsupcl 29602 hsupss 29604 hsupunss 29606 sshjval3 29617 hsupval2 29672 |
Copyright terms: Public domain | W3C validator |