| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hsupval | Structured version Visualization version GIF version | ||
| Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31344. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hsupval | ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30934 | . . . 4 ⊢ ℋ ∈ V | |
| 2 | 1 | pwex 5337 | . . 3 ⊢ 𝒫 ℋ ∈ V |
| 3 | 2 | elpw2 5291 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ) |
| 4 | unieq 4884 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 5 | 4 | fveq2d 6864 | . . . 4 ⊢ (𝑥 = 𝐴 → (⊥‘∪ 𝑥) = (⊥‘∪ 𝐴)) |
| 6 | 5 | fveq2d 6864 | . . 3 ⊢ (𝑥 = 𝐴 → (⊥‘(⊥‘∪ 𝑥)) = (⊥‘(⊥‘∪ 𝐴))) |
| 7 | df-chsup 31246 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | |
| 8 | fvex 6873 | . . 3 ⊢ (⊥‘(⊥‘∪ 𝐴)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6970 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| 10 | 3, 9 | sylbir 235 | 1 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 ‘cfv 6513 ℋchba 30854 ⊥cort 30865 ∨ℋ chsup 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-hilex 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-chsup 31246 |
| This theorem is referenced by: chsupval 31270 hsupcl 31274 hsupss 31276 hsupunss 31278 sshjval3 31289 hsupval2 31344 |
| Copyright terms: Public domain | W3C validator |