![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hsupval | Structured version Visualization version GIF version |
Description: Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 28854. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsupval | ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 28442 | . . . 4 ⊢ ℋ ∈ V | |
2 | 1 | pwex 5092 | . . 3 ⊢ 𝒫 ℋ ∈ V |
3 | 2 | elpw2 5062 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ ↔ 𝐴 ⊆ 𝒫 ℋ) |
4 | unieq 4679 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
5 | 4 | fveq2d 6450 | . . . 4 ⊢ (𝑥 = 𝐴 → (⊥‘∪ 𝑥) = (⊥‘∪ 𝐴)) |
6 | 5 | fveq2d 6450 | . . 3 ⊢ (𝑥 = 𝐴 → (⊥‘(⊥‘∪ 𝑥)) = (⊥‘(⊥‘∪ 𝐴))) |
7 | df-chsup 28756 | . . 3 ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | |
8 | fvex 6459 | . . 3 ⊢ (⊥‘(⊥‘∪ 𝐴)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6542 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
10 | 3, 9 | sylbir 227 | 1 ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ⊆ wss 3791 𝒫 cpw 4378 ∪ cuni 4671 ‘cfv 6135 ℋchba 28362 ⊥cort 28373 ∨ℋ chsup 28377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-hilex 28442 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-chsup 28756 |
This theorem is referenced by: chsupval 28780 hsupcl 28784 hsupss 28786 hsupunss 28788 sshjval3 28799 hsupval2 28854 |
Copyright terms: Public domain | W3C validator |