Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-cht | Structured version Visualization version GIF version |
Description: Define the first Chebyshev function, which adds up the logarithms of all primes less than 𝑥, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 25783. See https://en.wikipedia.org/wiki/Chebyshev_function 25783 for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
df-cht | ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccht 25775 | . 2 class θ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cr 10574 | . . 3 class ℝ | |
4 | cc0 10575 | . . . . . 6 class 0 | |
5 | 2 | cv 1537 | . . . . . 6 class 𝑥 |
6 | cicc 12782 | . . . . . 6 class [,] | |
7 | 4, 5, 6 | co 7150 | . . . . 5 class (0[,]𝑥) |
8 | cprime 16067 | . . . . 5 class ℙ | |
9 | 7, 8 | cin 3857 | . . . 4 class ((0[,]𝑥) ∩ ℙ) |
10 | vp | . . . . . 6 setvar 𝑝 | |
11 | 10 | cv 1537 | . . . . 5 class 𝑝 |
12 | clog 25245 | . . . . 5 class log | |
13 | 11, 12 | cfv 6335 | . . . 4 class (log‘𝑝) |
14 | 9, 13, 10 | csu 15090 | . . 3 class Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) |
15 | 2, 3, 14 | cmpt 5112 | . 2 class (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) |
16 | 1, 15 | wceq 1538 | 1 wff θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) |
Colors of variables: wff setvar class |
This definition is referenced by: chtf 25792 chtval 25794 |
Copyright terms: Public domain | W3C validator |