|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-cht | Structured version Visualization version GIF version | ||
| Description: Define the first Chebyshev function, which adds up the logarithms of all primes less than 𝑥, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 27142. See https://en.wikipedia.org/wiki/Chebyshev_function 27142 for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| df-cht | ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ccht 27134 | . 2 class θ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cr 11154 | . . 3 class ℝ | |
| 4 | cc0 11155 | . . . . . 6 class 0 | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 | 
| 6 | cicc 13390 | . . . . . 6 class [,] | |
| 7 | 4, 5, 6 | co 7431 | . . . . 5 class (0[,]𝑥) | 
| 8 | cprime 16708 | . . . . 5 class ℙ | |
| 9 | 7, 8 | cin 3950 | . . . 4 class ((0[,]𝑥) ∩ ℙ) | 
| 10 | vp | . . . . . 6 setvar 𝑝 | |
| 11 | 10 | cv 1539 | . . . . 5 class 𝑝 | 
| 12 | clog 26596 | . . . . 5 class log | |
| 13 | 11, 12 | cfv 6561 | . . . 4 class (log‘𝑝) | 
| 14 | 9, 13, 10 | csu 15722 | . . 3 class Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) | 
| 15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | 
| 16 | 1, 15 | wceq 1540 | 1 wff θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: chtf 27151 chtval 27153 | 
| Copyright terms: Public domain | W3C validator |