| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chtval | Structured version Visualization version GIF version | ||
| Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| chtval | ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7363 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
| 2 | 1 | ineq1d 4170 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
| 3 | 2 | sumeq1d 15617 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| 4 | df-cht 27044 | . 2 ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | |
| 5 | sumex 15605 | . 2 ⊢ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6938 | 1 ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3898 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 0cc0 11016 [,]cicc 13258 Σcsu 15603 ℙcprime 16592 logclog 26500 θccht 27038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-fun 6491 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-seq 13919 df-sum 15604 df-cht 27044 |
| This theorem is referenced by: efchtcl 27058 chtge0 27059 chtfl 27096 chtprm 27100 chtnprm 27101 chtwordi 27103 chtdif 27105 cht1 27112 prmorcht 27125 chtlepsi 27154 chtleppi 27158 chpchtsum 27167 chpub 27168 chtppilimlem1 27421 chtvalz 34653 |
| Copyright terms: Public domain | W3C validator |