Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chtval | Structured version Visualization version GIF version |
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
chtval | ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
2 | 1 | ineq1d 4142 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
3 | 2 | sumeq1d 15341 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
4 | df-cht 26151 | . 2 ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | |
5 | sumex 15327 | . 2 ⊢ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ∈ V | |
6 | 3, 4, 5 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 [,]cicc 13011 Σcsu 15325 ℙcprime 16304 logclog 25615 θccht 26145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seq 13650 df-sum 15326 df-cht 26151 |
This theorem is referenced by: efchtcl 26165 chtge0 26166 chtfl 26203 chtprm 26207 chtnprm 26208 chtwordi 26210 chtdif 26212 cht1 26219 prmorcht 26232 chtlepsi 26259 chtleppi 26263 chpchtsum 26272 chpub 26273 chtppilimlem1 26526 chtvalz 32509 |
Copyright terms: Public domain | W3C validator |