![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chtval | Structured version Visualization version GIF version |
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
chtval | β’ (π΄ β β β (ΞΈβπ΄) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7421 | . . . 4 β’ (π₯ = π΄ β (0[,]π₯) = (0[,]π΄)) | |
2 | 1 | ineq1d 4212 | . . 3 β’ (π₯ = π΄ β ((0[,]π₯) β© β) = ((0[,]π΄) β© β)) |
3 | 2 | sumeq1d 15653 | . 2 β’ (π₯ = π΄ β Ξ£π β ((0[,]π₯) β© β)(logβπ) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) |
4 | df-cht 26835 | . 2 β’ ΞΈ = (π₯ β β β¦ Ξ£π β ((0[,]π₯) β© β)(logβπ)) | |
5 | sumex 15640 | . 2 β’ Ξ£π β ((0[,]π΄) β© β)(logβπ) β V | |
6 | 3, 4, 5 | fvmpt 6999 | 1 β’ (π΄ β β β (ΞΈβπ΄) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β© cin 3948 βcfv 6544 (class class class)co 7413 βcr 11113 0cc0 11114 [,]cicc 13333 Ξ£csu 15638 βcprime 16614 logclog 26297 ΞΈccht 26829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-iota 6496 df-fun 6546 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-seq 13973 df-sum 15639 df-cht 26835 |
This theorem is referenced by: efchtcl 26849 chtge0 26850 chtfl 26887 chtprm 26891 chtnprm 26892 chtwordi 26894 chtdif 26896 cht1 26903 prmorcht 26916 chtlepsi 26943 chtleppi 26947 chpchtsum 26956 chpub 26957 chtppilimlem1 27210 chtvalz 33937 |
Copyright terms: Public domain | W3C validator |