| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chtval | Structured version Visualization version GIF version | ||
| Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| chtval | ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7349 | . . . 4 ⊢ (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴)) | |
| 2 | 1 | ineq1d 4167 | . . 3 ⊢ (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ)) |
| 3 | 2 | sumeq1d 15599 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| 4 | df-cht 27027 | . 2 ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | |
| 5 | sumex 15587 | . 2 ⊢ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6924 | 1 ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ‘cfv 6477 (class class class)co 7341 ℝcr 10997 0cc0 10998 [,]cicc 13240 Σcsu 15585 ℙcprime 16574 logclog 26483 θccht 27021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-iota 6433 df-fun 6479 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13901 df-sum 15586 df-cht 27027 |
| This theorem is referenced by: efchtcl 27041 chtge0 27042 chtfl 27079 chtprm 27083 chtnprm 27084 chtwordi 27086 chtdif 27088 cht1 27095 prmorcht 27108 chtlepsi 27137 chtleppi 27141 chpchtsum 27150 chpub 27151 chtppilimlem1 27404 chtvalz 34632 |
| Copyright terms: Public domain | W3C validator |