MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtval Structured version   Visualization version   GIF version

Theorem chtval 26164
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
chtval (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chtval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴))
21ineq1d 4142 . . 3 (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
32sumeq1d 15341 . 2 (𝑥 = 𝐴 → Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
4 df-cht 26151 . 2 θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝))
5 sumex 15327 . 2 Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ∈ V
63, 4, 5fvmpt 6857 1 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cin 3882  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  [,]cicc 13011  Σcsu 15325  cprime 16304  logclog 25615  θccht 26145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fun 6420  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seq 13650  df-sum 15326  df-cht 26151
This theorem is referenced by:  efchtcl  26165  chtge0  26166  chtfl  26203  chtprm  26207  chtnprm  26208  chtwordi  26210  chtdif  26212  cht1  26219  prmorcht  26232  chtlepsi  26259  chtleppi  26263  chpchtsum  26272  chpub  26273  chtppilimlem1  26526  chtvalz  32509
  Copyright terms: Public domain W3C validator