MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtval Structured version   Visualization version   GIF version

Theorem chtval 26259
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
chtval (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chtval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . 4 (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴))
21ineq1d 4145 . . 3 (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
32sumeq1d 15413 . 2 (𝑥 = 𝐴 → Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
4 df-cht 26246 . 2 θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝))
5 sumex 15399 . 2 Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ∈ V
63, 4, 5fvmpt 6875 1 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cin 3886  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  [,]cicc 13082  Σcsu 15397  cprime 16376  logclog 25710  θccht 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seq 13722  df-sum 15398  df-cht 26246
This theorem is referenced by:  efchtcl  26260  chtge0  26261  chtfl  26298  chtprm  26302  chtnprm  26303  chtwordi  26305  chtdif  26307  cht1  26314  prmorcht  26327  chtlepsi  26354  chtleppi  26358  chpchtsum  26367  chpub  26368  chtppilimlem1  26621  chtvalz  32609
  Copyright terms: Public domain W3C validator