MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtval Structured version   Visualization version   GIF version

Theorem chtval 27171
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
chtval (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chtval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . 4 (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴))
21ineq1d 4240 . . 3 (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
32sumeq1d 15748 . 2 (𝑥 = 𝐴 → Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
4 df-cht 27158 . 2 θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝))
5 sumex 15736 . 2 Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ∈ V
63, 4, 5fvmpt 7029 1 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  [,]cicc 13410  Σcsu 15734  cprime 16718  logclog 26614  θccht 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-sum 15735  df-cht 27158
This theorem is referenced by:  efchtcl  27172  chtge0  27173  chtfl  27210  chtprm  27214  chtnprm  27215  chtwordi  27217  chtdif  27219  cht1  27226  prmorcht  27239  chtlepsi  27268  chtleppi  27272  chpchtsum  27281  chpub  27282  chtppilimlem1  27535  chtvalz  34606
  Copyright terms: Public domain W3C validator