| Metamath
Proof Explorer Theorem List (p. 267 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cxpexpz 26601 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | cxpexp 26602 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | logcxp 26603 | Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
| Theorem | cxp0 26604 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐0) = 1) | ||
| Theorem | cxp1 26605 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐1) = 𝐴) | ||
| Theorem | 1cxp 26606 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1) | ||
| Theorem | ecxp 26607 | Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴)) | ||
| Theorem | cxpcl 26608 | Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
| Theorem | recxpcl 26609 | Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) | ||
| Theorem | rpcxpcl 26610 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
| Theorem | cxpne0 26611 | Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ≠ 0) | ||
| Theorem | cxpeq0 26612 | Complex exponentiation is zero iff the base is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑐𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 ≠ 0))) | ||
| Theorem | cxpadd 26613 | Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpp1 26614 | Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 1)) = ((𝐴↑𝑐𝐵) · 𝐴)) | ||
| Theorem | cxpneg 26615 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐-𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpsub 26616 | Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpge0 26617 | Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → 0 ≤ (𝐴↑𝑐𝐵)) | ||
| Theorem | mulcxplem 26618 | Lemma for mulcxp 26619. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶))) | ||
| Theorem | mulcxp 26619 | Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) | ||
| Theorem | cxprec 26620 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | divcxp 26621 | Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) / (𝐵↑𝑐𝐶))) | ||
| Theorem | cxpmul 26622 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
| Theorem | cxpmul2 26623 | Product of exponents law for complex exponentiation. Variation on cxpmul 26622 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | cxproot 26624 | The complex power function allows to write n-th roots via the idiom 𝐴↑𝑐(1 / 𝑁). (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑐(1 / 𝑁))↑𝑁) = 𝐴) | ||
| Theorem | cxpmul2z 26625 | Generalize cxpmul2 26623 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ)) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | abscxp 26626 | Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴↑𝑐𝐵)) = (𝐴↑𝑐(ℜ‘𝐵))) | ||
| Theorem | abscxp2 26627 | Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) | ||
| Theorem | cxplt 26628 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
| Theorem | cxple 26629 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
| Theorem | cxplea 26630 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) | ||
| Theorem | cxple2 26631 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) | ||
| Theorem | cxplt2 26632 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑐𝐶) < (𝐵↑𝑐𝐶))) | ||
| Theorem | cxple2a 26633 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐶) ∧ 𝐴 ≤ 𝐵) → (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)) | ||
| Theorem | cxplt3 26634 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
| Theorem | cxple3 26635 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpsqrtlem 26636 | Lemma for cxpsqrt 26637. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ) | ||
| Theorem | cxpsqrt 26637 | The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) | ||
| Theorem | logsqrt 26638 | Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2)) | ||
| Theorem | cxp0d 26639 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐0) = 1) | ||
| Theorem | cxp1d 26640 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐1) = 𝐴) | ||
| Theorem | 1cxpd 26641 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1↑𝑐𝐴) = 1) | ||
| Theorem | cxpcld 26642 | Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
| Theorem | cxpmul2d 26643 | Product of exponents law for complex exponentiation. Variation on cxpmul 26622 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | 0cxpd 26644 | Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (0↑𝑐𝐴) = 0) | ||
| Theorem | cxpexpzd 26645 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
| Theorem | cxpefd 26646 | Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | ||
| Theorem | cxpne0d 26647 | Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ≠ 0) | ||
| Theorem | cxpp1d 26648 | Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 + 1)) = ((𝐴↑𝑐𝐵) · 𝐴)) | ||
| Theorem | cxpnegd 26649 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐-𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpmul2zd 26650 | Generalize cxpmul2 26623 to negative integers. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | cxpaddd 26651 | Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpsubd 26652 | Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpltd 26653 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpled 26654 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
| Theorem | cxplead 26655 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) | ||
| Theorem | divcxpd 26656 | Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) / (𝐵↑𝑐𝐶))) | ||
| Theorem | recxpcld 26657 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℝ) | ||
| Theorem | cxpge0d 26658 | Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑𝑐𝐵)) | ||
| Theorem | cxple2ad 26659 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)) | ||
| Theorem | cxplt2d 26660 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑𝑐𝐶) < (𝐵↑𝑐𝐶))) | ||
| Theorem | cxple2d 26661 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) | ||
| Theorem | mulcxpd 26662 | Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) | ||
| Theorem | recxpf1lem 26663 | Complex exponentiation on positive real numbers is a one-to-one function. (Contributed by Thierry Arnoux, 1-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴↑𝑐𝐶) = (𝐵↑𝑐𝐶))) | ||
| Theorem | cxpsqrtth 26664 | Square root theorem over the complex numbers for the complex power function. Theorem I.35 of [Apostol] p. 29. Compare with sqrtth 15269. (Contributed by AV, 23-Dec-2022.) |
| ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑𝑐2) = 𝐴) | ||
| Theorem | 2irrexpq 26665* | There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 16155), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 26735. (Contributed by AV, 23-Dec-2022.) |
| ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | ||
| Theorem | cxprecd 26666 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | rpcxpcld 26667 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
| Theorem | logcxpd 26668 | Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
| Theorem | cxplt3d 26669 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
| Theorem | cxple3d 26670 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpmuld 26671 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
| Theorem | cxpgt0d 26672 | A positive real raised to a real power is positive. (Contributed by SN, 6-Apr-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 < (𝐴↑𝑐𝑁)) | ||
| Theorem | cxpcom 26673 | Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶)↑𝑐𝐵)) | ||
| Theorem | dvcxp1 26674* | The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) | ||
| Theorem | dvcxp2 26675* | The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴↑𝑐𝑥))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · (𝐴↑𝑐𝑥)))) | ||
| Theorem | dvsqrt 26676 | The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016.) |
| ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) | ||
| Theorem | dvcncxp1 26677* | Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ 𝐷 ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) | ||
| Theorem | dvcnsqrt 26678* | Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) | ||
| Theorem | cxpcn 26679* | Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016.) Avoid ax-mulf 11083. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐷) ⇒ ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ ℂ ↦ (𝑥↑𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
| Theorem | cxpcnOLD 26680* | Obsolete version of cxpcn 26679 as of 17-Apr-2025. (Contributed by Mario Carneiro, 1-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐷) ⇒ ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ ℂ ↦ (𝑥↑𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
| Theorem | cxpcn2 26681* | Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t ℝ+) ⇒ ⊢ (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥↑𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
| Theorem | cxpcn3lem 26682* | Lemma for cxpcn3 26683. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝐷 = (◡ℜ “ ℝ+) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) & ⊢ 𝐿 = (𝐽 ↾t 𝐷) & ⊢ 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) & ⊢ 𝑇 = if(𝑈 ≤ (𝐸↑𝑐(1 / 𝑈)), 𝑈, (𝐸↑𝑐(1 / 𝑈))) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑎 ∈ (0[,)+∞)∀𝑏 ∈ 𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴 − 𝑏)) < 𝑑) → (abs‘(𝑎↑𝑐𝑏)) < 𝐸)) | ||
| Theorem | cxpcn3 26683* | Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝐷 = (◡ℜ “ ℝ+) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) & ⊢ 𝐿 = (𝐽 ↾t 𝐷) ⇒ ⊢ (𝑥 ∈ (0[,)+∞), 𝑦 ∈ 𝐷 ↦ (𝑥↑𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) | ||
| Theorem | resqrtcn 26684 | Continuity of the real square root function. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) | ||
| Theorem | sqrtcn 26685 | Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ) | ||
| Theorem | cxpaddlelem 26686 | Lemma for cxpaddle 26687. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ≤ 1) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴↑𝑐𝐵)) | ||
| Theorem | cxpaddle 26687 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ≤ 1) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴↑𝑐𝐶) + (𝐵↑𝑐𝐶))) | ||
| Theorem | abscxpbnd 26688 | Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 𝑀) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π)))) | ||
| Theorem | root1id 26689 | Property of an 𝑁-th root of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1) | ||
| Theorem | root1eq1 26690 | The only powers of an 𝑁-th root of unity that equal 1 are the multiples of 𝑁. In other words, -1↑𝑐(2 / 𝑁) has order 𝑁 in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁 ∥ 𝐾)) | ||
| Theorem | root1cj 26691 | Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁 − 𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 − 𝐾))) | ||
| Theorem | cxpeq 26692* | Solve an equation involving an 𝑁-th power. The expression -1↑𝑐(2 / 𝑁) = exp(2πi / 𝑁) is a way to write the primitive 𝑁-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))) | ||
| Theorem | zrtelqelz 26693 | If the 𝑁-th root of an integer 𝐴 is rational, that root is must be an integer. Similar to zsqrtelqelz 16666, generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝐴↑𝑐(1 / 𝑁)) ∈ ℤ) | ||
| Theorem | zrtdvds 26694 | A positive integer root divides its integer. (Contributed by Steven Nguyen, 6-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ ℕ) → (𝐴↑𝑐(1 / 𝑁)) ∥ 𝐴) | ||
| Theorem | rtprmirr 26695 | The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | loglesqrt 26696 | An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴)) | ||
| Theorem | logreclem 26697 | Symmetry of the natural logarithm range by negation. Lemma for logrec 26698. (Contributed by Saveliy Skresanov, 27-Dec-2016.) |
| ⊢ ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log) | ||
| Theorem | logrec 26698 | Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴))) | ||
Define "log using an arbitrary base" function and then prove some of its properties. Note that logb is generalized to an arbitrary base and arbitrary parameter in ℂ, but it doesn't accept infinities as arguments, unlike log. Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log". There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (𝐵 logb 𝑋) where 𝐵 is the base and 𝑋 is the argument of the logarithm function. An alternative would be to support the notational form (( logb ‘𝐵)‘𝑋); that looks a little more like traditional notation. Such a function ( logb ‘𝐵) for a fixed base can be obtained in Metamath (without the need for a new definition) by the curry function: (curry logb ‘𝐵), see logbmpt 26723, logbf 26724 and logbfval 26725. | ||
| Syntax | clogb 26699 | Extend class notation to include the logarithm generalized to an arbitrary base. |
| class logb | ||
| Definition | df-logb 26700* | Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017.) |
| ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |