![]() |
Metamath
Proof Explorer Theorem List (p. 267 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30435) |
![]() (30436-31958) |
![]() (31959-47941) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cacos 26601 | The arccosine function. |
class arccos | ||
Syntax | catan 26602 | The arctangent function. |
class arctan | ||
Definition | df-asin 26603 | Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ◡sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log, which we already know is total (except at 0). There are branch points at -1 and 1 (at which the function is defined), and branch cuts along the real line not between -1 and 1, which is to say (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | ||
Definition | df-acos 26604 | Define the arccosine function. See also remarks for df-asin 26603. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | ||
Definition | df-atan 26605 | Define the arctangent function. See also remarks for df-asin 26603. Unlike arcsin and arccos, this function is not defined everywhere, because tan(𝑧) ≠ ±i for all 𝑧 ∈ ℂ. For all other 𝑧, there is a formula for arctan(𝑧) in terms of log, and we take that as the definition. Branch points are at ±i; branch cuts are on the pure imaginary axis not between -i and i, which is to say {𝑧 ∈ ℂ ∣ (i · 𝑧) ∈ (-∞, -1) ∪ (1, +∞)}. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | ||
Theorem | asinlem 26606 | The argument to the logarithm in df-asin 26603 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | ||
Theorem | asinlem2 26607 | The argument to the logarithm in df-asin 26603 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1) | ||
Theorem | asinlem3a 26608 | Lemma for asinlem3 26609. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
Theorem | asinlem3 26609 | The argument to the logarithm in df-asin 26603 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
Theorem | asinf 26610 | Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arcsin:ℂ⟶ℂ | ||
Theorem | asincl 26611 | Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | ||
Theorem | acosf 26612 | Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arccos:ℂ⟶ℂ | ||
Theorem | acoscl 26613 | Closure for the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) ∈ ℂ) | ||
Theorem | atandm 26614 | Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | ||
Theorem | atandm2 26615 | This form of atandm 26614 is a bit more useful for showing that the logarithms in df-atan 26605 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | ||
Theorem | atandm3 26616 | A compact form of atandm 26614. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | ||
Theorem | atandm4 26617 | A compact form of atandm 26614. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) | ||
Theorem | atanf 26618 | Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arctan:(ℂ ∖ {-i, i})⟶ℂ | ||
Theorem | atancl 26619 | Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ) | ||
Theorem | asinval 26620 | Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | ||
Theorem | acosval 26621 | Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) | ||
Theorem | atanval 26622 | Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) | ||
Theorem | atanre 26623 | A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | ||
Theorem | asinneg 26624 | The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | ||
Theorem | acosneg 26625 | The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (arccos‘-𝐴) = (π − (arccos‘𝐴))) | ||
Theorem | efiasin 26626 | The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | ||
Theorem | sinasin 26627 | The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 26630 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) | ||
Theorem | cosacos 26628 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(arccos‘𝐴)) = 𝐴) | ||
Theorem | asinsinlem 26629 | Lemma for asinsin 26630. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴)))) | ||
Theorem | asinsin 26630 | The arcsine function composed with sin is equal to the identity. This plus sinasin 26627 allow to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 26634). (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
Theorem | acoscos 26631 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴) | ||
Theorem | asin1 26632 | The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (arcsin‘1) = (π / 2) | ||
Theorem | acos1 26633 | The arccosine of 1 is 0. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (arccos‘1) = 0 | ||
Theorem | reasinsin 26634 | The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
Theorem | asinsinb 26635 | Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arcsin‘𝐴) = 𝐵 ↔ (sin‘𝐵) = 𝐴)) | ||
Theorem | acoscosb 26636 | Relationship between cosine and arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (0(,)π)) → ((arccos‘𝐴) = 𝐵 ↔ (cos‘𝐵) = 𝐴)) | ||
Theorem | asinbnd 26637 | The arcsine function has range within a vertical strip of the complex plane with real part between -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
Theorem | acosbnd 26638 | The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) | ||
Theorem | asinrebnd 26639 | Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ (-(π / 2)[,](π / 2))) | ||
Theorem | asinrecl 26640 | The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ ℝ) | ||
Theorem | acosrecl 26641 | The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-1[,]1) → (arccos‘𝐴) ∈ ℝ) | ||
Theorem | cosasin 26642 | The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
Theorem | sinacos 26643 | The sine of the arccosine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (sin‘(arccos‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
Theorem | atandmneg 26644 | The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | ||
Theorem | atanneg 26645 | The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | ||
Theorem | atan0 26646 | The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (arctan‘0) = 0 | ||
Theorem | atandmcj 26647 | The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) | ||
Theorem | atancj 26648 | The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 26645 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))) | ||
Theorem | atanrecl 26649 | The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | ||
Theorem | efiatan 26650 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴))))) | ||
Theorem | atanlogaddlem 26651 | Lemma for atanlogadd 26652. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
Theorem | atanlogadd 26652 | The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
Theorem | atanlogsublem 26653 | Lemma for atanlogsub 26654. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π)) | ||
Theorem | atanlogsub 26654 | A variation on atanlogadd 26652, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
Theorem | efiatan2 26655 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) | ||
Theorem | 2efiatan 26656 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1)) | ||
Theorem | tanatan 26657 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴) | ||
Theorem | atandmtan 26658 | The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) | ||
Theorem | cosatan 26659 | The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2))))) | ||
Theorem | cosatanne0 26660 | The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) ≠ 0) | ||
Theorem | atantan 26661 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴) | ||
Theorem | atantanb 26662 | Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arctan‘𝐴) = 𝐵 ↔ (tan‘𝐵) = 𝐴)) | ||
Theorem | atanbndlem 26663 | Lemma for atanbnd 26664. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
Theorem | atanbnd 26664 | The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
Theorem | atanord 26665 | The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (arctan‘𝐴) < (arctan‘𝐵))) | ||
Theorem | atan1 26666 | The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (arctan‘1) = (π / 4) | ||
Theorem | bndatandm 26667 | A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | ||
Theorem | atans 26668* | The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) | ||
Theorem | atans2 26669* | It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)) | ||
Theorem | atansopn 26670* | The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ∈ (TopOpen‘ℂfld) | ||
Theorem | atansssdm 26671* | The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ⊆ dom arctan | ||
Theorem | ressatans 26672* | The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ ℝ ⊆ 𝑆 | ||
Theorem | dvatan 26673* | The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (ℂ D (arctan ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) | ||
Theorem | atancn 26674* | The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (arctan ↾ 𝑆) ∈ (𝑆–cn→ℂ) | ||
Theorem | atantayl 26675* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴↑𝑛) / 𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
Theorem | atantayl2 26676* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴↑𝑛) / 𝑛)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
Theorem | atantayl3 26677* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
Theorem | leibpilem1 26678 | Lemma for leibpi 26680. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
Theorem | leibpilem2 26679* | The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) & ⊢ 𝐴 ∈ V ⇒ ⊢ (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) | ||
Theorem | leibpi 26680 | The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15636). (2) Using leibpilem2 26679 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 26676). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 26676, Abel's theorem (abelth2 26187) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 26674) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (π / 4) | ||
Theorem | leibpisum 26681 | The Leibniz formula for π. This version of leibpi 26680 looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) | ||
Theorem | log2cnv 26682 | Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (log‘2) | ||
Theorem | log2tlbnd 26683* | Bound the error term in the series of log2cnv 26682. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))) | ||
Theorem | log2ublem1 26684 | Lemma for log2ub 26687. The proof of log2ub 26687, which is simply the evaluation of log2tlbnd 26683 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 & ⊢ 𝐴 ∈ ℝ & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 | ||
Theorem | log2ublem2 26685* | Lemma for log2ub 26687. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵) & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 − 1) = 𝐾 & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 𝑁) = 3 & ⊢ ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺) | ||
Theorem | log2ublem3 26686 | Lemma for log2ub 26687. In decimal, this is a proof that the first four terms of the series for log2 is less than 53056 / 76545. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ ;;;;53056 | ||
Theorem | log2ub 26687 | log2 is less than 253 / 365. If written in decimal, this is because log2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ (log‘2) < (;;253 / ;;365) | ||
Theorem | log2le1 26688 | log2 is less than 1. This is just a weaker form of log2ub 26687 when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (log‘2) < 1 | ||
Theorem | birthdaylem1 26689* | Lemma for birthday 26692. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) | ||
Theorem | birthdaylem2 26690* | For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) | ||
Theorem | birthdaylem3 26691* | For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))) | ||
Theorem | birthday 26692* | The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} & ⊢ 𝐾 = ;23 & ⊢ 𝑁 = ;;365 ⇒ ⊢ ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2) | ||
Syntax | carea 26693 | Area of regions in the complex plane. |
class area | ||
Definition | df-area 26694* | Define the area of a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
Theorem | dmarea 26695* | The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) | ||
Theorem | areambl 26696 | The fibers of a measurable region are finitely measurable subsets of ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) | ||
Theorem | areass 26697 | A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) | ||
Theorem | dfarea 26698* | Rewrite df-area 26694 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
Theorem | areaf 26699 | Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ area:dom area⟶(0[,)+∞) | ||
Theorem | areacl 26700 | The area of a measurable region is a real number. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝑆 ∈ dom area → (area‘𝑆) ∈ ℝ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |