![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cic | Structured version Visualization version GIF version |
Description: Function returning the set of isomorphic objects for each category π. Definition 3.15 of [Adamek] p. 29. Analogous to the definition of the group isomorphism relation βπ, see df-gic 19128. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
df-cic | β’ βπ = (π β Cat β¦ ((Isoβπ) supp β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccic 17738 | . 2 class βπ | |
2 | vc | . . 3 setvar π | |
3 | ccat 17604 | . . 3 class Cat | |
4 | 2 | cv 1540 | . . . . 5 class π |
5 | ciso 17689 | . . . . 5 class Iso | |
6 | 4, 5 | cfv 6540 | . . . 4 class (Isoβπ) |
7 | c0 4321 | . . . 4 class β | |
8 | csupp 8142 | . . . 4 class supp | |
9 | 6, 7, 8 | co 7405 | . . 3 class ((Isoβπ) supp β ) |
10 | 2, 3, 9 | cmpt 5230 | . 2 class (π β Cat β¦ ((Isoβπ) supp β )) |
11 | 1, 10 | wceq 1541 | 1 wff βπ = (π β Cat β¦ ((Isoβπ) supp β )) |
Colors of variables: wff setvar class |
This definition is referenced by: cicfval 17740 |
Copyright terms: Public domain | W3C validator |