| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cic | Structured version Visualization version GIF version | ||
| Description: Function returning the set of isomorphic objects for each category 𝑐. Definition 3.15 of [Adamek] p. 29. Analogous to the definition of the group isomorphism relation ≃𝑔, see df-gic 19246. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| df-cic | ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccic 17809 | . 2 class ≃𝑐 | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | ccat 17677 | . . 3 class Cat | |
| 4 | 2 | cv 1538 | . . . . 5 class 𝑐 |
| 5 | ciso 17760 | . . . . 5 class Iso | |
| 6 | 4, 5 | cfv 6540 | . . . 4 class (Iso‘𝑐) |
| 7 | c0 4313 | . . . 4 class ∅ | |
| 8 | csupp 8166 | . . . 4 class supp | |
| 9 | 6, 7, 8 | co 7412 | . . 3 class ((Iso‘𝑐) supp ∅) |
| 10 | 2, 3, 9 | cmpt 5205 | . 2 class (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) |
| 11 | 1, 10 | wceq 1539 | 1 wff ≃𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cicfval 17811 |
| Copyright terms: Public domain | W3C validator |