MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cic Structured version   Visualization version   GIF version

Definition df-cic 17425
Description: Function returning the set of isomorphic objects for each category 𝑐. Definition 3.15 of [Adamek] p. 29. Analogous to the definition of the group isomorphism relation 𝑔, see df-gic 18791. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
df-cic 𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))

Detailed syntax breakdown of Definition df-cic
StepHypRef Expression
1 ccic 17424 . 2 class 𝑐
2 vc . . 3 setvar 𝑐
3 ccat 17290 . . 3 class Cat
42cv 1538 . . . . 5 class 𝑐
5 ciso 17375 . . . . 5 class Iso
64, 5cfv 6418 . . . 4 class (Iso‘𝑐)
7 c0 4253 . . . 4 class
8 csupp 7948 . . . 4 class supp
96, 7, 8co 7255 . . 3 class ((Iso‘𝑐) supp ∅)
102, 3, 9cmpt 5153 . 2 class (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
111, 10wceq 1539 1 wff 𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
Colors of variables: wff setvar class
This definition is referenced by:  cicfval  17426
  Copyright terms: Public domain W3C validator