MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 19051
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 19049 . 2 class 𝑔
2 cgim 19048 . . . 4 class GrpIso
32ccnv 5633 . . 3 class GrpIso
4 cvv 3446 . . . 4 class V
5 c1o 8406 . . . 4 class 1o
64, 5cdif 3908 . . 3 class (V ∖ 1o)
73, 6cima 5637 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1542 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  19060  gicer  19067
  Copyright terms: Public domain W3C validator