MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 17966
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1𝑜))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 17964 . 2 class 𝑔
2 cgim 17963 . . . 4 class GrpIso
32ccnv 5276 . . 3 class GrpIso
4 cvv 3350 . . . 4 class V
5 c1o 7757 . . . 4 class 1𝑜
64, 5cdif 3729 . . 3 class (V ∖ 1𝑜)
73, 6cima 5280 . 2 class ( GrpIso “ (V ∖ 1𝑜))
81, 7wceq 1652 1 wff 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  17975  gicer  17982
  Copyright terms: Public domain W3C validator