MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 19243
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 19241 . 2 class 𝑔
2 cgim 19240 . . . 4 class GrpIso
32ccnv 5653 . . 3 class GrpIso
4 cvv 3459 . . . 4 class V
5 c1o 8473 . . . 4 class 1o
64, 5cdif 3923 . . 3 class (V ∖ 1o)
73, 6cima 5657 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1540 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  19253  gicer  19260
  Copyright terms: Public domain W3C validator