MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 18664
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 18662 . 2 class 𝑔
2 cgim 18661 . . . 4 class GrpIso
32ccnv 5550 . . 3 class GrpIso
4 cvv 3408 . . . 4 class V
5 c1o 8195 . . . 4 class 1o
64, 5cdif 3863 . . 3 class (V ∖ 1o)
73, 6cima 5554 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1543 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  18673  gicer  18680
  Copyright terms: Public domain W3C validator