MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 18184
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 18182 . 2 class 𝑔
2 cgim 18181 . . . 4 class GrpIso
32ccnv 5403 . . 3 class GrpIso
4 cvv 3410 . . . 4 class V
5 c1o 7897 . . . 4 class 1o
64, 5cdif 3821 . . 3 class (V ∖ 1o)
73, 6cima 5407 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1508 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  18193  gicer  18200
  Copyright terms: Public domain W3C validator