MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 18791
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 18789 . 2 class 𝑔
2 cgim 18788 . . . 4 class GrpIso
32ccnv 5579 . . 3 class GrpIso
4 cvv 3422 . . . 4 class V
5 c1o 8260 . . . 4 class 1o
64, 5cdif 3880 . . 3 class (V ∖ 1o)
73, 6cima 5583 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1539 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  18800  gicer  18807
  Copyright terms: Public domain W3C validator