Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 18400
 Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 18398 . 2 class 𝑔
2 cgim 18397 . . . 4 class GrpIso
32ccnv 5519 . . 3 class GrpIso
4 cvv 3441 . . . 4 class V
5 c1o 8085 . . . 4 class 1o
64, 5cdif 3878 . . 3 class (V ∖ 1o)
73, 6cima 5523 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1538 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
 Colors of variables: wff setvar class This definition is referenced by:  brgic  18409  gicer  18416
 Copyright terms: Public domain W3C validator