MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 19133
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 19131 . 2 class 𝑔
2 cgim 19130 . . . 4 class GrpIso
32ccnv 5675 . . 3 class GrpIso
4 cvv 3474 . . . 4 class V
5 c1o 8458 . . . 4 class 1o
64, 5cdif 3945 . . 3 class (V ∖ 1o)
73, 6cima 5679 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1541 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  19142  gicer  19149
  Copyright terms: Public domain W3C validator