MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 18876
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 18874 . 2 class 𝑔
2 cgim 18873 . . . 4 class GrpIso
32ccnv 5588 . . 3 class GrpIso
4 cvv 3432 . . . 4 class V
5 c1o 8290 . . . 4 class 1o
64, 5cdif 3884 . . 3 class (V ∖ 1o)
73, 6cima 5592 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1539 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  18885  gicer  18892
  Copyright terms: Public domain W3C validator