MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 19213
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 19211 . 2 class 𝑔
2 cgim 19210 . . . 4 class GrpIso
32ccnv 5677 . . 3 class GrpIso
4 cvv 3471 . . . 4 class V
5 c1o 8479 . . . 4 class 1o
64, 5cdif 3944 . . 3 class (V ∖ 1o)
73, 6cima 5681 . 2 class ( GrpIso “ (V ∖ 1o))
81, 7wceq 1534 1 wff 𝑔 = ( GrpIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  19223  gicer  19230
  Copyright terms: Public domain W3C validator