HomeHome Metamath Proof Explorer
Theorem List (p. 178 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 17701-17800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminvfuc 17701* If 𝑉(𝑥) is an inverse to 𝑈(𝑥) for each 𝑥, and 𝑈 is a natural transformation, then 𝑉 is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝐵 = (Base‘𝐶)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐶 Func 𝐷))    &   𝐼 = (Inv‘𝑄)    &   𝐽 = (Inv‘𝐷)    &   (𝜑𝑈 ∈ (𝐹𝑁𝐺))    &   ((𝜑𝑥𝐵) → (𝑈𝑥)(((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥))𝑋)       (𝜑𝑈(𝐹𝐼𝐺)(𝑥𝐵𝑋))
 
Theoremfuciso 17702* A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017.)
𝑄 = (𝐶 FuncCat 𝐷)    &   𝐵 = (Base‘𝐶)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 ∈ (𝐶 Func 𝐷))    &   (𝜑𝐺 ∈ (𝐶 Func 𝐷))    &   𝐼 = (Iso‘𝑄)    &   𝐽 = (Iso‘𝐷)       (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ (((1st𝐹)‘𝑥)𝐽((1st𝐺)‘𝑥)))))
 
Theoremnatpropd 17703 If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑 → (Homf𝐴) = (Homf𝐵))    &   (𝜑 → (compf𝐴) = (compf𝐵))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐴 ∈ Cat)    &   (𝜑𝐵 ∈ Cat)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)       (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
 
Theoremfucpropd 17704 If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑 → (Homf𝐴) = (Homf𝐵))    &   (𝜑 → (compf𝐴) = (compf𝐵))    &   (𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐴 ∈ Cat)    &   (𝜑𝐵 ∈ Cat)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)       (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))
 
8.1.10  Initial, terminal and zero objects of a category
 
Syntaxcinito 17705 Extend class notation with the class of initial objects of a category.
class InitO
 
Syntaxctermo 17706 Extend class notation with the class of terminal objects of a category.
class TermO
 
Syntaxczeroo 17707 Extend class notation with the class of zero objects of a category.
class ZeroO
 
Definitiondf-inito 17708* An object A is said to be an initial object provided that for each object B there is exactly one morphism from A to B. Definition 7.1 in [Adamek] p. 101, or definition in [Lang] p. 57 (called "a universally repelling object" there). See dfinito2 17727 and dfinito3 17729 for alternate definitions depending on df-termo 17709. (Contributed by AV, 3-Apr-2020.)
InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
 
Definitiondf-termo 17709* An object A is called a terminal object provided that for each object B there is exactly one morphism from B to A. Definition 7.4 in [Adamek] p. 102, or definition in [Lang] p. 57 (called "a universally attracting object" there). See dftermo2 17728 and dftermo3 17730 for alternate definitions depending on df-inito 17708. (Contributed by AV, 3-Apr-2020.)
TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
 
Definitiondf-zeroo 17710 An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of [Adamek] p. 103. (Contributed by AV, 3-Apr-2020.)
ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
 
Theoreminitofn 17711 InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
InitO Fn Cat
 
Theoremtermofn 17712 TermO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
TermO Fn Cat
 
Theoremzeroofn 17713 ZeroO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.)
ZeroO Fn Cat
 
Theoreminitorcl 17714 Reverse closure for an initial object: If a class has an initial object, the class is a category. (Contributed by AV, 4-Apr-2020.)
(𝐼 ∈ (InitO‘𝐶) → 𝐶 ∈ Cat)
 
Theoremtermorcl 17715 Reverse closure for a terminal object: If a class has a terminal object, the class is a category. (Contributed by AV, 4-Apr-2020.)
(𝑇 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat)
 
Theoremzeroorcl 17716 Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.)
(𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat)
 
Theoreminitoval 17717* The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
 
Theoremtermoval 17718* The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (TermO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
 
Theoremzerooval 17719 The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
 
Theoremisinito 17720* The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐼𝐵)       (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
 
Theoremistermo 17721* The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐼𝐵)       (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
 
Theoremiszeroo 17722 The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐼𝐵)       (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶))))
 
Theoremisinitoi 17723* Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)       ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
 
Theoremistermoi 17724* Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)       ((𝜑𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑂)))
 
Theoreminitoid 17725 For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)       ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})
 
Theoremtermoid 17726 For a terminal object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 18-Apr-2020.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ Cat)       ((𝜑𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})
 
Theoremdfinito2 17727 An initial object is a terminal object in the opposite category. An alternate definition of df-inito 17708 depending on df-termo 17709. (Contributed by Zhi Wang, 29-Aug-2024.)
InitO = (𝑐 ∈ Cat ↦ (TermO‘(oppCat‘𝑐)))
 
Theoremdftermo2 17728 A terminal object is an initial object in the opposite category. An alternate definition of df-termo 17709 depending on df-inito 17708. (Contributed by Zhi Wang, 29-Aug-2024.)
TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐)))
 
Theoremdfinito3 17729 An alternate definition of df-inito 17708 depending on df-termo 17709, without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024.)
InitO = (TermO ∘ (oppCat ↾ Cat))
 
Theoremdftermo3 17730 An alternate definition of df-termo 17709 depending on df-inito 17708, without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024.)
TermO = (InitO ∘ (oppCat ↾ Cat))
 
Theoreminitoo 17731 An initial object is an object. (Contributed by AV, 14-Apr-2020.)
(𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
 
Theoremtermoo 17732 A terminal object is an object. (Contributed by AV, 18-Apr-2020.)
(𝐶 ∈ Cat → (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
 
Theoremiszeroi 17733 Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020.)
((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))))
 
Theorem2initoinv 17734 Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   (𝜑𝐵 ∈ (InitO‘𝐶))       ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
 
Theoreminitoeu1 17735* Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   (𝜑𝐵 ∈ (InitO‘𝐶))       (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
 
Theoreminitoeu1w 17736 Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   (𝜑𝐵 ∈ (InitO‘𝐶))       (𝜑𝐴( ≃𝑐𝐶)𝐵)
 
Theoreminitoeu2lem0 17737 Lemma 0 for initoeu2 17740. (Contributed by AV, 9-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   𝑋 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &    = (comp‘𝐶)       (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
 
Theoreminitoeu2lem1 17738* Lemma 1 for initoeu2 17740. (Contributed by AV, 9-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   𝑋 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &    = (comp‘𝐶)       ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
 
Theoreminitoeu2lem2 17739* Lemma 2 for initoeu2 17740. (Contributed by AV, 10-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   𝑋 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &    = (comp‘𝐶)       ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
 
Theoreminitoeu2 17740 Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in [Adamek] p. 102. (Contributed by AV, 10-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (InitO‘𝐶))    &   (𝜑𝐴( ≃𝑐𝐶)𝐵)       (𝜑𝐵 ∈ (InitO‘𝐶))
 
Theorem2termoinv 17741 Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (TermO‘𝐶))    &   (𝜑𝐵 ∈ (TermO‘𝐶))       ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
 
Theoremtermoeu1 17742* Terminal objects are essentially unique (strong form), i.e. there is a unique isomorphism between two terminal objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 18-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (TermO‘𝐶))    &   (𝜑𝐵 ∈ (TermO‘𝐶))       (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
 
Theoremtermoeu1w 17743 Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐴 ∈ (TermO‘𝐶))    &   (𝜑𝐵 ∈ (TermO‘𝐶))       (𝜑𝐴( ≃𝑐𝐶)𝐵)
 
8.2  Arrows (disjointified hom-sets)
 
Syntaxcdoma 17744 Extend class notation to include the domain extractor for an arrow.
class doma
 
Syntaxccoda 17745 Extend class notation to include the codomain extractor for an arrow.
class coda
 
Syntaxcarw 17746 Extend class notation to include the collection of all arrows of a category.
class Arrow
 
Syntaxchoma 17747 Extend class notation to include the set of all arrows with a specific domain and codomain.
class Homa
 
Definitiondf-doma 17748 Definition of the domain extractor for an arrow. (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.)
doma = (1st ∘ 1st )
 
Definitiondf-coda 17749 Definition of the codomain extractor for an arrow. (Contributed by FL, 26-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.)
coda = (2nd ∘ 1st )
 
Definitiondf-homa 17750* Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma 17748 and df-coda 17749. (Contributed by FL, 6-May-2007.) (Revised by Mario Carneiro, 11-Jan-2017.)
Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
 
Definitiondf-arw 17751 Definition of the set of arrows of a category. We will use the term "arrow" to denote a morphism tagged with its domain and codomain, as opposed to Hom, which allows hom-sets for distinct objects to overlap. (Contributed by Mario Carneiro, 11-Jan-2017.)
Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
 
Theoremhomarcl 17752 Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
 
Theoremhomafval 17753* Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽𝑥))))
 
Theoremhomaf 17754 Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)       (𝜑𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V))
 
Theoremhomaval 17755 Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
 
Theoremelhoma 17756 Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
 
Theoremelhomai 17757 Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐽𝑌))       (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)
 
Theoremelhomai2 17758 Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐽 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐽𝑌))       (𝜑 → ⟨𝑋, 𝑌, 𝐹⟩ ∈ (𝑋𝐻𝑌))
 
Theoremhomarcl2 17759 Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐵 = (Base‘𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋𝐵𝑌𝐵))
 
Theoremhomarel 17760 An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       Rel (𝑋𝐻𝑌)
 
Theoremhoma1 17761 The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝑍(𝑋𝐻𝑌)𝐹𝑍 = ⟨𝑋, 𝑌⟩)
 
Theoremhomahom2 17762 The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐽 = (Hom ‘𝐶)       (𝑍(𝑋𝐻𝑌)𝐹𝐹 ∈ (𝑋𝐽𝑌))
 
Theoremhomahom 17763 The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &   𝐽 = (Hom ‘𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋𝐽𝑌))
 
Theoremhomadm 17764 The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
 
Theoremhomacd 17765 The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
 
Theoremhomadmcd 17766 Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)       (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
 
Theoremarwval 17767 The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐻 = (Homa𝐶)       𝐴 = ran 𝐻
 
Theoremarwrcl 17768 The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)       (𝐹𝐴𝐶 ∈ Cat)
 
Theoremarwhoma 17769 An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐻 = (Homa𝐶)       (𝐹𝐴𝐹 ∈ ((doma𝐹)𝐻(coda𝐹)))
 
Theoremhomarw 17770 A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐻 = (Homa𝐶)       (𝑋𝐻𝑌) ⊆ 𝐴
 
Theoremarwdm 17771 The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (𝐹𝐴 → (doma𝐹) ∈ 𝐵)
 
Theoremarwcd 17772 The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (𝐹𝐴 → (coda𝐹) ∈ 𝐵)
 
Theoremdmaf 17773 The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (doma𝐴):𝐴𝐵
 
Theoremcdaf 17774 The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐵 = (Base‘𝐶)       (coda𝐴):𝐴𝐵
 
Theoremarwhom 17775 The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)    &   𝐽 = (Hom ‘𝐶)       (𝐹𝐴 → (2nd𝐹) ∈ ((doma𝐹)𝐽(coda𝐹)))
 
Theoremarwdmcd 17776 Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐴 = (Arrow‘𝐶)       (𝐹𝐴𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)
 
8.2.1  Identity and composition for arrows
 
Syntaxcida 17777 Extend class notation to include identity for arrows.
class Ida
 
Syntaxccoa 17778 Extend class notation to include composition for arrows.
class compa
 
Definitiondf-ida 17779* Definition of the identity arrow, which is just the identity morphism tagged with its domain and codomain. (Contributed by FL, 26-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.)
Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
 
Definitiondf-coa 17780* Definition of the composition of arrows. Since arrows are tagged with domain and codomain, this does not need to be a quinary operation like the regular composition in a category comp. Instead, it is a partial binary operation on arrows, which is defined when the domain of the first arrow matches the codomain of the second. (Contributed by Mario Carneiro, 11-Jan-2017.)
compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
 
Theoremidafval 17781* Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &    1 = (Id‘𝐶)       (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
 
Theoremidaval 17782 Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &    1 = (Id‘𝐶)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
 
Theoremida2 17783 Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &    1 = (Id‘𝐶)    &   (𝜑𝑋𝐵)       (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))
 
Theoremidahom 17784 Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝐻 = (Homa𝐶)       (𝜑 → (𝐼𝑋) ∈ (𝑋𝐻𝑋))
 
Theoremidadm 17785 Domain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)       (𝜑 → (doma‘(𝐼𝑋)) = 𝑋)
 
Theoremidacd 17786 Codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)       (𝜑 → (coda‘(𝐼𝑋)) = 𝑋)
 
Theoremidaf 17787 The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐼 = (Ida𝐶)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   𝐴 = (Arrow‘𝐶)       (𝜑𝐼:𝐵𝐴)
 
Theoremcoafval 17788* The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)    &    = (comp‘𝐶)        · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
 
Theoremeldmcoa 17789 A pair 𝐺, 𝐹 is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)       (𝐺dom · 𝐹 ↔ (𝐹𝐴𝐺𝐴 ∧ (coda𝐹) = (doma𝐺)))
 
Theoremdmcoass 17790 The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)       dom · ⊆ (𝐴 × 𝐴)
 
Theoremhomdmcoa 17791 If 𝐹:𝑋𝑌 and 𝐺:𝑌𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑𝐺dom · 𝐹)
 
Theoremcoaval 17792 Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &    = (comp‘𝐶)       (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
 
Theoremcoa2 17793 The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &    = (comp‘𝐶)       (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
 
Theoremcoahom 17794 The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐻 = (Homa𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))       (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
 
Theoremcoapm 17795 Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
· = (compa𝐶)    &   𝐴 = (Arrow‘𝐶)        · ∈ (𝐴pm (𝐴 × 𝐴))
 
Theoremarwlid 17796 Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &    · = (compa𝐶)    &    1 = (Ida𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)
 
Theoremarwrid 17797 Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &    · = (compa𝐶)    &    1 = (Ida𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)
 
Theoremarwass 17798 Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
𝐻 = (Homa𝐶)    &    · = (compa𝐶)    &    1 = (Ida𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &   (𝜑𝐾 ∈ (𝑍𝐻𝑊))       (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))
 
8.3  Examples of categories
 
8.3.1  The category of sets
 
Syntaxcsetc 17799 Extend class notation to include the category Set.
class SetCat
 
Definitiondf-setc 17800* Definition of the category Set, relativized to a subset 𝑢. Example 3.3(1) of [Adamek] p. 22. This is the category of all sets in 𝑢 and functions between these sets. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by FL, 8-Nov-2013.) (Revised by Mario Carneiro, 3-Jan-2017.)
SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >