![]() |
Metamath
Proof Explorer Theorem List (p. 178 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sectffval 17701* | Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ Β· = (compβπΆ) & β’ 1 = (IdβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β π = (π₯ β π΅, π¦ β π΅ β¦ {β¨π, πβ© β£ ((π β (π₯π»π¦) β§ π β (π¦π»π₯)) β§ (π(β¨π₯, π¦β© Β· π₯)π) = ( 1 βπ₯))})) | ||
Theorem | sectfval 17702* | Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ Β· = (compβπΆ) & β’ 1 = (IdβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (πππ) = {β¨π, πβ© β£ ((π β (ππ»π) β§ π β (ππ»π)) β§ (π(β¨π, πβ© Β· π)π) = ( 1 βπ))}) | ||
Theorem | sectss 17703 | The section relation is a relation between morphisms from π to π and morphisms from π to π. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ Β· = (compβπΆ) & β’ 1 = (IdβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (πππ) β ((ππ»π) Γ (ππ»π))) | ||
Theorem | issect 17704 | The property "πΉ is a section of πΊ". (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ Β· = (compβπΆ) & β’ 1 = (IdβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (πΉ(πππ)πΊ β (πΉ β (ππ»π) β§ πΊ β (ππ»π) β§ (πΊ(β¨π, πβ© Β· π)πΉ) = ( 1 βπ)))) | ||
Theorem | issect2 17705 | Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ Β· = (compβπΆ) & β’ 1 = (IdβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) & β’ (π β πΊ β (ππ»π)) β β’ (π β (πΉ(πππ)πΊ β (πΊ(β¨π, πβ© Β· π)πΉ) = ( 1 βπ))) | ||
Theorem | sectcan 17706 | If πΊ is a section of πΉ and πΉ is a section of π», then πΊ = π». Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΊ(πππ)πΉ) & β’ (π β πΉ(πππ)π») β β’ (π β πΊ = π») | ||
Theorem | sectco 17707 | Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ Β· = (compβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ(πππ)πΊ) & β’ (π β π»(πππ)πΎ) β β’ (π β (π»(β¨π, πβ© Β· π)πΉ)(πππ)(πΊ(β¨π, πβ© Β· π)πΎ)) | ||
Theorem | isofval 17708* | Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.) |
β’ (πΆ β Cat β (IsoβπΆ) = ((π₯ β V β¦ dom π₯) β (InvβπΆ))) | ||
Theorem | invffval 17709* | Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) β β’ (π β π = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) | ||
Theorem | invfval 17710 | Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) β β’ (π β (πππ) = ((πππ) β© β‘(πππ))) | ||
Theorem | isinv 17711 | Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) β β’ (π β (πΉ(πππ)πΊ β (πΉ(πππ)πΊ β§ πΊ(πππ)πΉ))) | ||
Theorem | invss 17712 | The inverse relation is a relation between morphisms πΉ:πβΆπ and their inverses πΊ:πβΆπ. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π» = (Hom βπΆ) β β’ (π β (πππ) β ((ππ»π) Γ (ππ»π))) | ||
Theorem | invsym 17713 | The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (πΉ(πππ)πΊ β πΊ(πππ)πΉ)) | ||
Theorem | invsym2 17714 | The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β β‘(πππ) = (πππ)) | ||
Theorem | invfun 17715 | The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β Fun (πππ)) | ||
Theorem | isoval 17716 | The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 21-May-2020.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) β β’ (π β (ππΌπ) = dom (πππ)) | ||
Theorem | inviso1 17717 | If πΊ is an inverse to πΉ, then πΉ is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) & β’ (π β πΉ(πππ)πΊ) β β’ (π β πΉ β (ππΌπ)) | ||
Theorem | inviso2 17718 | If πΊ is an inverse to πΉ, then πΊ is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) & β’ (π β πΉ(πππ)πΊ) β β’ (π β πΊ β (ππΌπ)) | ||
Theorem | invf 17719 | The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) β β’ (π β (πππ):(ππΌπ)βΆ(ππΌπ)) | ||
Theorem | invf1o 17720 | The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism πΉ β (ππΌπ) has a unique inverse, denoted by ((InvβπΆ)βπΉ). Remark 3.12 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) β β’ (π β (πππ):(ππΌπ)β1-1-ontoβ(ππΌπ)) | ||
Theorem | invinv 17721 | The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) & β’ (π β πΉ β (ππΌπ)) β β’ (π β ((πππ)β((πππ)βπΉ)) = πΉ) | ||
Theorem | invco 17722 | The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) & β’ (π β πΉ β (ππΌπ)) & β’ Β· = (compβπΆ) & β’ (π β π β π΅) & β’ (π β πΊ β (ππΌπ)) β β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ)(πππ)(((πππ)βπΉ)(β¨π, πβ© Β· π)((πππ)βπΊ))) | ||
Theorem | dfiso2 17723* | Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΆ β Cat) & β’ πΌ = (IsoβπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) & β’ 1 = (IdβπΆ) & β’ β¬ = (β¨π, πβ©(compβπΆ)π) & β’ β = (β¨π, πβ©(compβπΆ)π) β β’ (π β (πΉ β (ππΌπ) β βπ β (ππ»π)((π β¬ πΉ) = ( 1 βπ) β§ (πΉ β π) = ( 1 βπ)))) | ||
Theorem | dfiso3 17724* | Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ πΌ = (IsoβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) β β’ (π β (πΉ β (ππΌπ) β βπ β (ππ»π)(π(πππ)πΉ β§ πΉ(πππ)π))) | ||
Theorem | inveq 17725 | If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((πΉ(πππ)πΊ β§ πΉ(πππ)πΎ) β πΊ = πΎ)) | ||
Theorem | isofn 17726 | The function value of the function returning the isomorphisms of a category is a function over the square product of the base set of the category. (Contributed by AV, 5-Apr-2020.) |
β’ (πΆ β Cat β (IsoβπΆ) Fn ((BaseβπΆ) Γ (BaseβπΆ))) | ||
Theorem | isohom 17727 | An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ πΌ = (IsoβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (ππΌπ) β (ππ»π)) | ||
Theorem | isoco 17728 | The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ Β· = (compβπΆ) & β’ πΌ = (IsoβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππΌπ)) & β’ (π β πΊ β (ππΌπ)) β β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) β (ππΌπ)) | ||
Theorem | oppcsect 17729 | A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (oppCatβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) & β’ π = (Sectβπ) β β’ (π β (πΉ(πππ)πΊ β πΊ(πππ)πΉ)) | ||
Theorem | oppcsect2 17730 | A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (oppCatβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) & β’ π = (Sectβπ) β β’ (π β (πππ) = β‘(πππ)) | ||
Theorem | oppcinv 17731 | An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (oppCatβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (InvβπΆ) & β’ π½ = (Invβπ) β β’ (π β (ππ½π) = (ππΌπ)) | ||
Theorem | oppciso 17732 | An isomorphism in the opposite category. See also remark 3.9 in [Adamek] p. 28. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (oppCatβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΌ = (IsoβπΆ) & β’ π½ = (Isoβπ) β β’ (π β (ππ½π) = (ππΌπ)) | ||
Theorem | sectmon 17733 | If πΉ is a section of πΊ, then πΉ is a monomorphism. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (MonoβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ(πππ)πΊ) β β’ (π β πΉ β (πππ)) | ||
Theorem | monsect 17734 | If πΉ is a monomorphism and πΊ is a section of πΉ, then πΊ is an inverse of πΉ and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π = (MonoβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (InvβπΆ) & β’ (π β πΉ β (πππ)) & β’ (π β πΊ(πππ)πΉ) β β’ (π β πΉ(πππ)πΊ) | ||
Theorem | sectepi 17735 | If πΉ is a section of πΊ, then πΊ is an epimorphism. An epimorphism that arises from a section is also known as a split epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ πΈ = (EpiβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ(πππ)πΊ) β β’ (π β πΊ β (ππΈπ)) | ||
Theorem | episect 17736 | If πΉ is an epimorphism and πΉ is a section of πΊ, then πΊ is an inverse of πΉ and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ πΈ = (EpiβπΆ) & β’ π = (SectβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (InvβπΆ) & β’ (π β πΉ β (ππΈπ)) & β’ (π β πΉ(πππ)πΊ) β β’ (π β πΉ(πππ)πΊ) | ||
Theorem | sectid 17737 | The identity is a section of itself. (Contributed by AV, 8-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IdβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) β β’ (π β (πΌβπ)(π(SectβπΆ)π)(πΌβπ)) | ||
Theorem | invid 17738 | The inverse of the identity is the identity. (Contributed by AV, 8-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IdβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) β β’ (π β (πΌβπ)(π(InvβπΆ)π)(πΌβπ)) | ||
Theorem | idiso 17739 | The identity is an isomorphism. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 8-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IdβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) β β’ (π β (πΌβπ) β (π(IsoβπΆ)π)) | ||
Theorem | idinv 17740 | The inverse of the identity is the identity. Example 3.13 of [Adamek] p. 28. (Contributed by AV, 9-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IdβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) β β’ (π β ((π(InvβπΆ)π)β(πΌβπ)) = (πΌβπ)) | ||
Theorem | invisoinvl 17741 | The inverse of an isomorphism πΉ (which is unique because of invf 17719 and is therefore denoted by ((πππ)βπΉ), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IsoβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππΌπ)) β β’ (π β ((πππ)βπΉ)(πππ)πΉ) | ||
Theorem | invisoinvr 17742 | The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IsoβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππΌπ)) β β’ (π β πΉ(πππ)((πππ)βπΉ)) | ||
Theorem | invcoisoid 17743 | The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IsoβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππΌπ)) & β’ 1 = (IdβπΆ) & β’ β¬ = (β¨π, πβ©(compβπΆ)π) β β’ (π β (((πππ)βπΉ) β¬ πΉ) = ( 1 βπ)) | ||
Theorem | isocoinvid 17744 | The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ πΌ = (IsoβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππΌπ)) & β’ 1 = (IdβπΆ) & β’ β¬ = (β¨π, πβ©(compβπΆ)π) β β’ (π β (πΉ β¬ ((πππ)βπΉ)) = ( 1 βπ)) | ||
Theorem | rcaninv 17745 | Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020.) |
β’ π΅ = (BaseβπΆ) & β’ π = (InvβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (π(IsoβπΆ)π)) & β’ (π β πΊ β (π(Hom βπΆ)π)) & β’ (π β π» β (π(Hom βπΆ)π)) & β’ π = ((πππ)βπΉ) & β’ β¬ = (β¨π, πβ©(compβπΆ)π) β β’ (π β ((πΊ β¬ π ) = (π» β¬ π ) β πΊ = π»)) | ||
In this subsection, the "is isomorphic to" relation between objects of a category βπ is defined (see df-cic 17747). It is shown that this relation is an equivalence relation, see cicer 17757. | ||
Syntax | ccic 17746 | Extend class notation to include the category isomorphism relation. |
class βπ | ||
Definition | df-cic 17747 | Function returning the set of isomorphic objects for each category π. Definition 3.15 of [Adamek] p. 29. Analogous to the definition of the group isomorphism relation βπ, see df-gic 19174. (Contributed by AV, 4-Apr-2020.) |
β’ βπ = (π β Cat β¦ ((Isoβπ) supp β )) | ||
Theorem | cicfval 17748 | The set of isomorphic objects of the category π. (Contributed by AV, 4-Apr-2020.) |
β’ (πΆ β Cat β ( βπ βπΆ) = ((IsoβπΆ) supp β )) | ||
Theorem | brcic 17749 | The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.) |
β’ πΌ = (IsoβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π( βπ βπΆ)π β (ππΌπ) β β )) | ||
Theorem | cic 17750* | Objects π and π in a category are isomorphic provided that there is an isomorphism π:πβΆπ, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.) |
β’ πΌ = (IsoβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π( βπ βπΆ)π β βπ π β (ππΌπ))) | ||
Theorem | brcici 17751 | Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.) |
β’ πΌ = (IsoβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππΌπ)) β β’ (π β π( βπ βπΆ)π) | ||
Theorem | cicref 17752 | Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020.) |
β’ ((πΆ β Cat β§ π β (BaseβπΆ)) β π( βπ βπΆ)π) | ||
Theorem | ciclcl 17753 | Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.) |
β’ ((πΆ β Cat β§ π ( βπ βπΆ)π) β π β (BaseβπΆ)) | ||
Theorem | cicrcl 17754 | Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020.) |
β’ ((πΆ β Cat β§ π ( βπ βπΆ)π) β π β (BaseβπΆ)) | ||
Theorem | cicsym 17755 | Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020.) |
β’ ((πΆ β Cat β§ π ( βπ βπΆ)π) β π( βπ βπΆ)π ) | ||
Theorem | cictr 17756 | Isomorphism is transitive. (Contributed by AV, 5-Apr-2020.) |
β’ ((πΆ β Cat β§ π ( βπ βπΆ)π β§ π( βπ βπΆ)π) β π ( βπ βπΆ)π) | ||
Theorem | cicer 17757 | Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) |
β’ (πΆ β Cat β ( βπ βπΆ) Er (BaseβπΆ)) | ||
Syntax | cssc 17758 | Extend class notation to include the subset relation for subcategories. |
class βcat | ||
Syntax | cresc 17759 | Extend class notation to include category restriction (which is like structure restriction but also allows limiting the collection of morphisms). |
class βΎcat | ||
Syntax | csubc 17760 | Extend class notation to include the collection of subcategories of a category. |
class Subcat | ||
Definition | df-ssc 17761* | Define the subset relation for subcategories. Despite the name, this is not really a "category-aware" definition, which is to say it makes no explicit references to homsets or composition; instead this is a subset-like relation on the functions that are used as subcategory specifications in df-subc 17763, which makes it play an analogous role to the subset relation applied to the subgroups of a group. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ βcat = {β¨β, πβ© β£ βπ‘(π Fn (π‘ Γ π‘) β§ βπ β π« π‘β β Xπ₯ β (π Γ π )π« (πβπ₯))} | ||
Definition | df-resc 17762* | Define the restriction of a category to a given set of arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ βΎcat = (π β V, β β V β¦ ((π βΎs dom dom β) sSet β¨(Hom βndx), ββ©)) | ||
Definition | df-subc 17763* | (SubcatβπΆ) is the set of all the subcategory specifications of the category πΆ. Like df-subg 19039, this is not actually a collection of categories (as in definition 4.1(a) of [Adamek] p. 48), but only sets which when given operations from the base category (using df-resc 17762) form a category. All the objects and all the morphisms of the subcategory belong to the supercategory. The identity of an object, the domain and the codomain of a morphism are the same in the subcategory and the supercategory. The composition of the subcategory is a restriction of the composition of the supercategory. (Contributed by FL, 17-Sep-2009.) (Revised by Mario Carneiro, 4-Jan-2017.) |
β’ Subcat = (π β Cat β¦ {β β£ (β βcat (Homf βπ) β§ [dom dom β / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯βπ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯βπ¦)βπ β (π¦βπ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯βπ§)))}) | ||
Theorem | sscrel 17764 | The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ Rel βcat | ||
Theorem | brssc 17765* | The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π» βcat π½ β βπ‘(π½ Fn (π‘ Γ π‘) β§ βπ β π« π‘π» β Xπ₯ β (π Γ π )π« (π½βπ₯))) | ||
Theorem | sscpwex 17766* | An analogue of pwex 5377 for the subcategory subset relation: The collection of subcategory subsets of a given set π½ is a set. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ {β β£ β βcat π½} β V | ||
Theorem | subcrcl 17767 | Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π» β (SubcatβπΆ) β πΆ β Cat) | ||
Theorem | sscfn1 17768 | The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π» βcat π½) & β’ (π β π = dom dom π») β β’ (π β π» Fn (π Γ π)) | ||
Theorem | sscfn2 17769 | The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π» βcat π½) & β’ (π β π = dom dom π½) β β’ (π β π½ Fn (π Γ π)) | ||
Theorem | ssclem 17770 | Lemma for ssc1 17772 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π» Fn (π Γ π)) β β’ (π β (π» β V β π β V)) | ||
Theorem | isssc 17771* | Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π» Fn (π Γ π)) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π β π) β β’ (π β (π» βcat π½ β (π β π β§ βπ₯ β π βπ¦ β π (π₯π»π¦) β (π₯π½π¦)))) | ||
Theorem | ssc1 17772 | Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π» Fn (π Γ π)) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π» βcat π½) β β’ (π β π β π) | ||
Theorem | ssc2 17773 | Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π» Fn (π Γ π)) & β’ (π β π» βcat π½) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (ππ»π) β (ππ½π)) | ||
Theorem | sscres 17774 | Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ ((π» Fn (π Γ π) β§ π β π) β (π» βΎ (π Γ π)) βcat π») | ||
Theorem | sscid 17775 | The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ ((π» Fn (π Γ π) β§ π β π) β π» βcat π») | ||
Theorem | ssctr 17776 | The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ ((π΄ βcat π΅ β§ π΅ βcat πΆ) β π΄ βcat πΆ) | ||
Theorem | ssceq 17777 | The subcategory subset relation is antisymmetric. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ ((π΄ βcat π΅ β§ π΅ βcat π΄) β π΄ = π΅) | ||
Theorem | rescval 17778 | Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π· = (πΆ βΎcat π») β β’ ((πΆ β π β§ π» β π) β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) | ||
Theorem | rescval2 17779 | Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π· = (πΆ βΎcat π») & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β π» Fn (π Γ π)) β β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) | ||
Theorem | rescbas 17780 | Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
β’ π· = (πΆ βΎcat π») & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π΅) β β’ (π β π = (Baseβπ·)) | ||
Theorem | rescbasOLD 17781 | Obsolete version of rescbas 17780 as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π· = (πΆ βΎcat π») & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π΅) β β’ (π β π = (Baseβπ·)) | ||
Theorem | reschom 17782 | Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π· = (πΆ βΎcat π») & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π΅) β β’ (π β π» = (Hom βπ·)) | ||
Theorem | reschomf 17783 | Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π· = (πΆ βΎcat π») & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π΅) β β’ (π β π» = (Homf βπ·)) | ||
Theorem | rescco 17784 | Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
β’ π· = (πΆ βΎcat π») & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π΅) & β’ Β· = (compβπΆ) β β’ (π β Β· = (compβπ·)) | ||
Theorem | resccoOLD 17785 | Obsolete proof of rescco 17784 as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π· = (πΆ βΎcat π») & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π΅) & β’ Β· = (compβπΆ) β β’ (π β Β· = (compβπ·)) | ||
Theorem | rescabs 17786 | Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 9-Nov-2024.) |
β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πΆ βΎcat π») βΎcat π½) = (πΆ βΎcat π½)) | ||
Theorem | rescabsOLD 17787 | Obsolete proof of seqp1d 13987 as of 10-Nov-2024. Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΆ β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πΆ βΎcat π») βΎcat π½) = (πΆ βΎcat π½)) | ||
Theorem | rescabs2 17788 | Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β πΆ β π) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πΆ βΎs π) βΎcat π½) = (πΆ βΎcat π½)) | ||
Theorem | issubc 17789* | Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π» = (Homf βπΆ) & β’ 1 = (IdβπΆ) & β’ Β· = (compβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π = dom dom π½) β β’ (π β (π½ β (SubcatβπΆ) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) | ||
Theorem | issubc2 17790* | Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π» = (Homf βπΆ) & β’ 1 = (IdβπΆ) & β’ Β· = (compβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π½ Fn (π Γ π)) β β’ (π β (π½ β (SubcatβπΆ) β (π½ βcat π» β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π½π§))))) | ||
Theorem | 0ssc 17791 | For any category πΆ, the empty set is a subcategory subset of πΆ. (Contributed by AV, 23-Apr-2020.) |
β’ (πΆ β Cat β β βcat (Homf βπΆ)) | ||
Theorem | 0subcat 17792 | For any category πΆ, the empty set is a (full) subcategory of πΆ, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.) |
β’ (πΆ β Cat β β β (SubcatβπΆ)) | ||
Theorem | catsubcat 17793 | For any category πΆ, πΆ itself is a (full) subcategory of πΆ, see example 4.3(1.b) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.) |
β’ (πΆ β Cat β (Homf βπΆ) β (SubcatβπΆ)) | ||
Theorem | subcssc 17794 | An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β π½ β (SubcatβπΆ)) & β’ π» = (Homf βπΆ) β β’ (π β π½ βcat π») | ||
Theorem | subcfn 17795 | An element in the set of subcategories is a binary function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ (π β π½ β (SubcatβπΆ)) & β’ (π β π = dom dom π½) β β’ (π β π½ Fn (π Γ π)) | ||
Theorem | subcss1 17796 | The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ (π β π½ β (SubcatβπΆ)) & β’ (π β π½ Fn (π Γ π)) & β’ π΅ = (BaseβπΆ) β β’ (π β π β π΅) | ||
Theorem | subcss2 17797 | The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ (π β π½ β (SubcatβπΆ)) & β’ (π β π½ Fn (π Γ π)) & β’ π» = (Hom βπΆ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (ππ½π) β (ππ»π)) | ||
Theorem | subcidcl 17798 | The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ (π β π½ β (SubcatβπΆ)) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π β π) & β’ 1 = (IdβπΆ) β β’ (π β ( 1 βπ) β (ππ½π)) | ||
Theorem | subccocl 17799 | A subcategory is closed under composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ (π β π½ β (SubcatβπΆ)) & β’ (π β π½ Fn (π Γ π)) & β’ (π β π β π) & β’ Β· = (compβπΆ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β πΉ β (ππ½π)) & β’ (π β πΊ β (ππ½π)) β β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) β (ππ½π)) | ||
Theorem | subccatid 17800* | A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π· = (πΆ βΎcat π½) & β’ (π β π½ β (SubcatβπΆ)) & β’ (π β π½ Fn (π Γ π)) & β’ 1 = (IdβπΆ) β β’ (π β (π· β Cat β§ (Idβπ·) = (π₯ β π β¦ ( 1 βπ₯)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |