![]() |
Metamath
Proof Explorer Theorem List (p. 178 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mreexmrid 17701* | In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in [FaureFrolicher] p. 84. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → (𝑆 ∪ {𝑌}) ∈ 𝐼) | ||
Theorem | mreexexlemd 17702* | This lemma is used to generate substitution instances of the induction hypothesis in mreexexd 17706. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾)) & ⊢ (𝜑 → ∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexlem2d 17703* | Used in mreexexlem4d 17705 to prove the induction step in mreexexd 17706. See the proof of Proposition 4.2.1 in [FaureFrolicher] p. 86 to 87. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)) | ||
Theorem | mreexexlem3d 17704* | Base case of the induction in mreexexd 17706. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅)) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹 ≈ 𝑖 ∧ (𝑖 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexlem4d 17705* | Induction step of the induction in mreexexd 17706. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ ω) & ⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) & ⊢ (𝜑 → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexd 17706* | Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹 ∪ 𝐻) is independent, 𝐹 is contained in the closure of (𝐺 ∪ 𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞 ∪ 𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴 ∖ 𝐵) or (𝐵 ∖ 𝐴) is finite. The theorem is proven by induction using mreexexlem3d 17704 for the base case and mreexexlem4d 17705 for the induction step. (Contributed by David Moews, 1-May-2017.) Remove dependencies on ax-rep 5303 and ax-ac2 10532. (Revised by Brendan Leahy, 2-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹 ≈ 𝑞 ∧ (𝑞 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexdomd 17707* | In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17706. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
Theorem | mreexfidimd 17708* | In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17707 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
Theorem | isacs 17709* | A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | ||
Theorem | acsmre 17710 | Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | ||
Theorem | isacs2 17711* | In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) | ||
Theorem | acsfiel 17712* | A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | ||
Theorem | acsfiel2 17713* | A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) | ||
Theorem | acsmred 17714 | An algebraic closure system is also a Moore system. Deduction form of acsmre 17710. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | ||
Theorem | isacs1i 17715* | A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋)) | ||
Theorem | mreacs 17716 | Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | ||
Theorem | acsfn 17717* | Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn0 17718* | Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn1 17719* | Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn1c 17720* | Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn2 17721* | Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Syntax | ccat 17722 | Extend class notation with the class of categories. |
class Cat | ||
Syntax | ccid 17723 | Extend class notation with the identity arrow of a category. |
class Id | ||
Syntax | chomf 17724 | Extend class notation to include functionalized Hom-set extractor. |
class Homf | ||
Syntax | ccomf 17725 | Extend class notation to include functionalized composition operation. |
class compf | ||
Definition | df-cat 17726* | A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in [Lang] p. 53, without the axiom CAT 1, i.e., pairwise disjointness of hom-sets (cat1 18164). See setc2obas 18161 and setc2ohom 18162 for a counterexample. In contrast to definition 3.1 of [Adamek] p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ((Base‘𝑐)), the morphisms "hom" ((Hom ‘𝑐)) and the composition law "o" ((comp‘𝑐)). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in [Adamek] p. 21 and df-cid 17727. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Cat = {𝑐 ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))))} | ||
Definition | df-cid 17727* | Define the category identity arrow. Since it is uniquely defined when it exists, we do not need to add it to the data of the category, and instead extract it by uniqueness. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ Id = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓)))) | ||
Definition | df-homf 17728* | Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | ||
Definition | df-comf 17729* | Define the functionalized composition operator, which is exactly like comp but is guaranteed to be a function of the proper type. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) | ||
Theorem | iscat 17730* | The predicate "is a category". (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) | ||
Theorem | iscatd 17731* | Properties that determine a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
Theorem | catidex 17732* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
Theorem | catideu 17733* | Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
Theorem | cidfval 17734* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)))) | ||
Theorem | cidval 17735* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | ||
Theorem | cidffn 17736 | The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ Id Fn Cat | ||
Theorem | cidfn 17737 | The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) | ||
Theorem | catidd 17738* | Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ 1 )) | ||
Theorem | iscatd2 17739* | Version of iscatd 17731 with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
Theorem | catidcl 17740 | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) | ||
Theorem | catlid 17741 | Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (( 1 ‘𝑌)(〈𝑋, 𝑌〉 · 𝑌)𝐹) = 𝐹) | ||
Theorem | catrid 17742 | Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝐹) | ||
Theorem | catcocl 17743 | Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
Theorem | catass 17744 | Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → ((𝐾(〈𝑌, 𝑍〉 · 𝑊)𝐺)(〈𝑋, 𝑌〉 · 𝑊)𝐹) = (𝐾(〈𝑋, 𝑍〉 · 𝑊)(𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹))) | ||
Theorem | catcone0 17745 | Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑌) ≠ ∅) & ⊢ (𝜑 → (𝑌𝐻𝑍) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑍) ≠ ∅) | ||
Theorem | 0catg 17746 | Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) | ||
Theorem | 0cat 17747 | The empty set is a category, the empty category, see example 3.3(4.c) in [Adamek] p. 24. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ ∅ ∈ Cat | ||
Theorem | homffval 17748* | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) | ||
Theorem | fnhomeqhomf 17749 | If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) | ||
Theorem | homfval 17750 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) | ||
Theorem | homffn 17751 | The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐹 Fn (𝐵 × 𝐵) | ||
Theorem | homfeq 17752* | Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | ||
Theorem | homfeqd 17753 | If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) & ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | ||
Theorem | homfeqbas 17754 | Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) | ||
Theorem | homfeqval 17755 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) | ||
Theorem | comfffval 17756* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑦), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) | ||
Theorem | comffval 17757* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) | ||
Theorem | comfval 17758 | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
Theorem | comfffval2 17759* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑦), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) | ||
Theorem | comffval2 17760* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) | ||
Theorem | comfval2 17761 | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
Theorem | comfffn 17762 | The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) | ||
Theorem | comffn 17763 | The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) | ||
Theorem | comfeq 17764* | Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) | ||
Theorem | comfeqd 17765 | Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | ||
Theorem | comfeqval 17766 | Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) | ||
Theorem | catpropd 17767 | Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) | ||
Theorem | cidpropd 17768 | Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (Id‘𝐷)) | ||
Syntax | coppc 17769 | The opposite category operation. |
class oppCat | ||
Definition | df-oppc 17770* | Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of [Adamek] p. 25. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) | ||
Theorem | oppcval 17771* | Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st ‘𝑢)))〉)) | ||
Theorem | oppchomfval 17772 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ tpos 𝐻 = (Hom ‘𝑂) | ||
Theorem | oppchomfvalOLD 17773 | Obsolete proof of oppchomfval 17772 as of 14-Oct-2024. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ tpos 𝐻 = (Hom ‘𝑂) | ||
Theorem | oppchom 17774 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) | ||
Theorem | oppccofval 17775 | Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝑂)𝑍) = tpos (〈𝑍, 𝑌〉 · 𝑋)) | ||
Theorem | oppcco 17776 | Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑍)𝐹) = (𝐹(〈𝑍, 𝑌〉 · 𝑋)𝐺)) | ||
Theorem | oppcbas 17777 | Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | oppcbasOLD 17778 | Obsolete version of oppcbas 17777 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | oppccatid 17779 | Lemma for oppccat 17782. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶))) | ||
Theorem | oppchomf 17780 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) ⇒ ⊢ tpos 𝐻 = (Homf ‘𝑂) | ||
Theorem | oppcid 17781 | Identity function of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (Id‘𝑂) = 𝐵) | ||
Theorem | oppccat 17782 | An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) | ||
Theorem | 2oppcbas 17783 | The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd 17798. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘(oppCat‘𝑂)) | ||
Theorem | 2oppchomf 17784 | The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 17798. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) | ||
Theorem | 2oppccomf 17785 | The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17798. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) | ||
Theorem | oppchomfpropd 17786 | If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷))) | ||
Theorem | oppccomfpropd 17787 | If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷))) | ||
Theorem | oppccatf 17788 | oppCat restricted to Cat is a function from Cat to Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ (oppCat ↾ Cat):Cat⟶Cat | ||
Syntax | cmon 17789 | Extend class notation with the class of all monomorphisms. |
class Mono | ||
Syntax | cepi 17790 | Extend class notation with the class of all epimorphisms. |
class Epi | ||
Definition | df-mon 17791* | Function returning the monomorphisms of the category 𝑐. JFM CAT1 def. 10. (Contributed by FL, 5-Dec-2007.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Mono = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) | ||
Definition | df-epi 17792 | Function returning the epimorphisms of the category 𝑐. JFM CAT1 def. 11. (Contributed by FL, 8-Aug-2008.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | ||
Theorem | monfval 17793* | Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑀 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(〈𝑧, 𝑥〉 · 𝑦)𝑔))})) | ||
Theorem | ismon 17794* | Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) | ||
Theorem | ismon2 17795* | Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝐹(〈𝑧, 𝑋〉 · 𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉 · 𝑌)ℎ) → 𝑔 = ℎ)))) | ||
Theorem | monhom 17796 | A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) | ||
Theorem | moni 17797 | Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝑀𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑋)) ⇒ ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑋〉 · 𝑌)𝐺) = (𝐹(〈𝑍, 𝑋〉 · 𝑌)𝐾) ↔ 𝐺 = 𝐾)) | ||
Theorem | monpropd 17798 | If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (Mono‘𝐶) = (Mono‘𝐷)) | ||
Theorem | oppcmon 17799 | A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑀 = (Mono‘𝑂) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) | ||
Theorem | oppcepi 17800 | An epimorphism in the opposite category is a monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐸 = (Epi‘𝑂) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑌𝑀𝑋)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |