![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cicfval | Structured version Visualization version GIF version |
Description: The set of isomorphic objects of the category π. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cicfval | β’ (πΆ β Cat β ( βπ βπΆ) = ((IsoβπΆ) supp β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cic 17747 | . 2 β’ βπ = (π β Cat β¦ ((Isoβπ) supp β )) | |
2 | fveq2 6890 | . . 3 β’ (π = πΆ β (Isoβπ) = (IsoβπΆ)) | |
3 | 2 | oveq1d 7426 | . 2 β’ (π = πΆ β ((Isoβπ) supp β ) = ((IsoβπΆ) supp β )) |
4 | id 22 | . 2 β’ (πΆ β Cat β πΆ β Cat) | |
5 | ovexd 7446 | . 2 β’ (πΆ β Cat β ((IsoβπΆ) supp β ) β V) | |
6 | 1, 3, 4, 5 | fvmptd3 7020 | 1 β’ (πΆ β Cat β ( βπ βπΆ) = ((IsoβπΆ) supp β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 βcfv 6542 (class class class)co 7411 supp csupp 8148 Catccat 17612 Isociso 17697 βπ ccic 17746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-cic 17747 |
This theorem is referenced by: brcic 17749 ciclcl 17753 cicrcl 17754 cicer 17757 |
Copyright terms: Public domain | W3C validator |