| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cicfval | Structured version Visualization version GIF version | ||
| Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| cicfval | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cic 17765 | . 2 ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) | |
| 2 | fveq2 6861 | . . 3 ⊢ (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶)) | |
| 3 | 2 | oveq1d 7405 | . 2 ⊢ (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅)) |
| 4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | ovexd 7425 | . 2 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V) | |
| 6 | 1, 3, 4, 5 | fvmptd3 6994 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 Catccat 17632 Isociso 17715 ≃𝑐 ccic 17764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-cic 17765 |
| This theorem is referenced by: brcic 17767 ciclcl 17771 cicrcl 17772 cicer 17775 relcic 49038 |
| Copyright terms: Public domain | W3C validator |