Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cicfval | Structured version Visualization version GIF version |
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cicfval | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cic 17519 | . 2 ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) | |
2 | fveq2 6771 | . . 3 ⊢ (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶)) | |
3 | 2 | oveq1d 7287 | . 2 ⊢ (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅)) |
4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
5 | ovexd 7307 | . 2 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V) | |
6 | 1, 3, 4, 5 | fvmptd3 6895 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 ‘cfv 6432 (class class class)co 7272 supp csupp 7969 Catccat 17384 Isociso 17469 ≃𝑐 ccic 17518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-cic 17519 |
This theorem is referenced by: brcic 17521 ciclcl 17525 cicrcl 17526 cicer 17529 |
Copyright terms: Public domain | W3C validator |