Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cicfval | Structured version Visualization version GIF version |
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cicfval | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cic 17489 | . 2 ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) | |
2 | fveq2 6768 | . . 3 ⊢ (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶)) | |
3 | 2 | oveq1d 7283 | . 2 ⊢ (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅)) |
4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
5 | ovexd 7303 | . 2 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V) | |
6 | 1, 3, 4, 5 | fvmptd3 6892 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 ‘cfv 6430 (class class class)co 7268 supp csupp 7961 Catccat 17354 Isociso 17439 ≃𝑐 ccic 17488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-cic 17489 |
This theorem is referenced by: brcic 17491 ciclcl 17495 cicrcl 17496 cicer 17499 |
Copyright terms: Public domain | W3C validator |