MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicfval Structured version   Visualization version   GIF version

Theorem cicfval 17845
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
cicfval (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))

Proof of Theorem cicfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-cic 17844 . 2 𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
2 fveq2 6907 . . 3 (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶))
32oveq1d 7446 . 2 (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 ovexd 7466 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V)
61, 3, 4, 5fvmptd3 7039 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  cfv 6563  (class class class)co 7431   supp csupp 8184  Catccat 17709  Isociso 17794  𝑐 ccic 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-cic 17844
This theorem is referenced by:  brcic  17846  ciclcl  17850  cicrcl  17851  cicer  17854
  Copyright terms: Public domain W3C validator