MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicfval Structured version   Visualization version   GIF version

Theorem cicfval 17606
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
cicfval (𝐢 ∈ Cat β†’ ( ≃𝑐 β€˜πΆ) = ((Isoβ€˜πΆ) supp βˆ…))

Proof of Theorem cicfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-cic 17605 . 2 ≃𝑐 = (𝑐 ∈ Cat ↦ ((Isoβ€˜π‘) supp βˆ…))
2 fveq2 6825 . . 3 (𝑐 = 𝐢 β†’ (Isoβ€˜π‘) = (Isoβ€˜πΆ))
32oveq1d 7352 . 2 (𝑐 = 𝐢 β†’ ((Isoβ€˜π‘) supp βˆ…) = ((Isoβ€˜πΆ) supp βˆ…))
4 id 22 . 2 (𝐢 ∈ Cat β†’ 𝐢 ∈ Cat)
5 ovexd 7372 . 2 (𝐢 ∈ Cat β†’ ((Isoβ€˜πΆ) supp βˆ…) ∈ V)
61, 3, 4, 5fvmptd3 6954 1 (𝐢 ∈ Cat β†’ ( ≃𝑐 β€˜πΆ) = ((Isoβ€˜πΆ) supp βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3441  βˆ…c0 4269  β€˜cfv 6479  (class class class)co 7337   supp csupp 8047  Catccat 17470  Isociso 17555   ≃𝑐 ccic 17604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340  df-cic 17605
This theorem is referenced by:  brcic  17607  ciclcl  17611  cicrcl  17612  cicer  17615
  Copyright terms: Public domain W3C validator