| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cicfval | Structured version Visualization version GIF version | ||
| Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| cicfval | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cic 17814 | . 2 ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅)) | |
| 2 | fveq2 6881 | . . 3 ⊢ (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶)) | |
| 3 | 2 | oveq1d 7425 | . 2 ⊢ (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅)) |
| 4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | ovexd 7445 | . 2 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V) | |
| 6 | 1, 3, 4, 5 | fvmptd3 7014 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 Catccat 17681 Isociso 17764 ≃𝑐 ccic 17813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-cic 17814 |
| This theorem is referenced by: brcic 17816 ciclcl 17820 cicrcl 17821 cicer 17824 relcic 48979 |
| Copyright terms: Public domain | W3C validator |