MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicfval Structured version   Visualization version   GIF version

Theorem cicfval 17759
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
cicfval (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))

Proof of Theorem cicfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-cic 17758 . 2 𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
2 fveq2 6858 . . 3 (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶))
32oveq1d 7402 . 2 (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 ovexd 7422 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V)
61, 3, 4, 5fvmptd3 6991 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cfv 6511  (class class class)co 7387   supp csupp 8139  Catccat 17625  Isociso 17708  𝑐 ccic 17757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-cic 17758
This theorem is referenced by:  brcic  17760  ciclcl  17764  cicrcl  17765  cicer  17768  relcic  49034
  Copyright terms: Public domain W3C validator