MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicfval Structured version   Visualization version   GIF version

Theorem cicfval 17748
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
cicfval (𝐢 ∈ Cat β†’ ( ≃𝑐 β€˜πΆ) = ((Isoβ€˜πΆ) supp βˆ…))

Proof of Theorem cicfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-cic 17747 . 2 ≃𝑐 = (𝑐 ∈ Cat ↦ ((Isoβ€˜π‘) supp βˆ…))
2 fveq2 6890 . . 3 (𝑐 = 𝐢 β†’ (Isoβ€˜π‘) = (Isoβ€˜πΆ))
32oveq1d 7426 . 2 (𝑐 = 𝐢 β†’ ((Isoβ€˜π‘) supp βˆ…) = ((Isoβ€˜πΆ) supp βˆ…))
4 id 22 . 2 (𝐢 ∈ Cat β†’ 𝐢 ∈ Cat)
5 ovexd 7446 . 2 (𝐢 ∈ Cat β†’ ((Isoβ€˜πΆ) supp βˆ…) ∈ V)
61, 3, 4, 5fvmptd3 7020 1 (𝐢 ∈ Cat β†’ ( ≃𝑐 β€˜πΆ) = ((Isoβ€˜πΆ) supp βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4321  β€˜cfv 6542  (class class class)co 7411   supp csupp 8148  Catccat 17612  Isociso 17697   ≃𝑐 ccic 17746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-cic 17747
This theorem is referenced by:  brcic  17749  ciclcl  17753  cicrcl  17754  cicer  17757
  Copyright terms: Public domain W3C validator