MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicfval Structured version   Visualization version   GIF version

Theorem cicfval 17815
Description: The set of isomorphic objects of the category 𝑐. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
cicfval (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))

Proof of Theorem cicfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-cic 17814 . 2 𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
2 fveq2 6881 . . 3 (𝑐 = 𝐶 → (Iso‘𝑐) = (Iso‘𝐶))
32oveq1d 7425 . 2 (𝑐 = 𝐶 → ((Iso‘𝑐) supp ∅) = ((Iso‘𝐶) supp ∅))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 ovexd 7445 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) ∈ V)
61, 3, 4, 5fvmptd3 7014 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cfv 6536  (class class class)co 7410   supp csupp 8164  Catccat 17681  Isociso 17764  𝑐 ccic 17813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-cic 17814
This theorem is referenced by:  brcic  17816  ciclcl  17820  cicrcl  17821  cicer  17824  relcic  48979
  Copyright terms: Public domain W3C validator