MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 28247
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 28040. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 28246 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3422 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1538 . . . . . 6 class 𝑤
6 c0 4253 . . . . . 6 class
75, 6wne 2942 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1538 . . . . . . . . 9 class 𝑖
109, 5cfv 6418 . . . . . . . 8 class (𝑤𝑖)
11 c1 10803 . . . . . . . . . 10 class 1
12 caddc 10805 . . . . . . . . . 10 class +
139, 11, 12co 7255 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6418 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4560 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1538 . . . . . . . 8 class 𝑔
17 cedg 27320 . . . . . . . 8 class Edg
1816, 17cfv 6418 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2108 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 10802 . . . . . . 7 class 0
21 chash 13972 . . . . . . . . 9 class
225, 21cfv 6418 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11135 . . . . . . . 8 class
2422, 11, 23co 7255 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13311 . . . . . . 7 class ..^
2620, 24, 25co 7255 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3063 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14193 . . . . . . . 8 class lastS
295, 28cfv 6418 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6418 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4560 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2108 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1085 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 27269 . . . . . 6 class Vtx
3516, 34cfv 6418 . . . . 5 class (Vtx‘𝑔)
3635cword 14145 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3067 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5153 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1539 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  28248
  Copyright terms: Public domain W3C validator