MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 30010
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29803. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 30009 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3477 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1535 . . . . . 6 class 𝑤
6 c0 4338 . . . . . 6 class
75, 6wne 2937 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1535 . . . . . . . . 9 class 𝑖
109, 5cfv 6562 . . . . . . . 8 class (𝑤𝑖)
11 c1 11153 . . . . . . . . . 10 class 1
12 caddc 11155 . . . . . . . . . 10 class +
139, 11, 12co 7430 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6562 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4632 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1535 . . . . . . . 8 class 𝑔
17 cedg 29078 . . . . . . . 8 class Edg
1816, 17cfv 6562 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2105 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11152 . . . . . . 7 class 0
21 chash 14365 . . . . . . . . 9 class
225, 21cfv 6562 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11489 . . . . . . . 8 class
2422, 11, 23co 7430 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13690 . . . . . . 7 class ..^
2620, 24, 25co 7430 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3058 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14596 . . . . . . . 8 class lastS
295, 28cfv 6562 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6562 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4632 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2105 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 29027 . . . . . 6 class Vtx
3516, 34cfv 6562 . . . . 5 class (Vtx‘𝑔)
3635cword 14548 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3432 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5230 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1536 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  30011
  Copyright terms: Public domain W3C validator