MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29909
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29699. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29908 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3459 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1539 . . . . . 6 class 𝑤
6 c0 4308 . . . . . 6 class
75, 6wne 2932 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1539 . . . . . . . . 9 class 𝑖
109, 5cfv 6530 . . . . . . . 8 class (𝑤𝑖)
11 c1 11128 . . . . . . . . . 10 class 1
12 caddc 11130 . . . . . . . . . 10 class +
139, 11, 12co 7403 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6530 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4603 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1539 . . . . . . . 8 class 𝑔
17 cedg 28972 . . . . . . . 8 class Edg
1816, 17cfv 6530 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2108 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11127 . . . . . . 7 class 0
21 chash 14346 . . . . . . . . 9 class
225, 21cfv 6530 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11464 . . . . . . . 8 class
2422, 11, 23co 7403 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13669 . . . . . . 7 class ..^
2620, 24, 25co 7403 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3051 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14578 . . . . . . . 8 class lastS
295, 28cfv 6530 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6530 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4603 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2108 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 28921 . . . . . 6 class Vtx
3516, 34cfv 6530 . . . . 5 class (Vtx‘𝑔)
3635cword 14529 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3415 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5201 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1540 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29910
  Copyright terms: Public domain W3C validator