MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29966
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29753. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29965 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3437 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1540 . . . . . 6 class 𝑤
6 c0 4282 . . . . . 6 class
75, 6wne 2929 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1540 . . . . . . . . 9 class 𝑖
109, 5cfv 6488 . . . . . . . 8 class (𝑤𝑖)
11 c1 11016 . . . . . . . . . 10 class 1
12 caddc 11018 . . . . . . . . . 10 class +
139, 11, 12co 7354 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6488 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4579 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1540 . . . . . . . 8 class 𝑔
17 cedg 29029 . . . . . . . 8 class Edg
1816, 17cfv 6488 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2113 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11015 . . . . . . 7 class 0
21 chash 14241 . . . . . . . . 9 class
225, 21cfv 6488 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11353 . . . . . . . 8 class
2422, 11, 23co 7354 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13558 . . . . . . 7 class ..^
2620, 24, 25co 7354 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3048 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14473 . . . . . . . 8 class lastS
295, 28cfv 6488 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6488 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4579 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2113 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 28978 . . . . . 6 class Vtx
3516, 34cfv 6488 . . . . 5 class (Vtx‘𝑔)
3635cword 14424 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3396 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5176 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1541 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29967
  Copyright terms: Public domain W3C validator