MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 28355
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 28148. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 28354 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3433 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1538 . . . . . 6 class 𝑤
6 c0 4257 . . . . . 6 class
75, 6wne 2944 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1538 . . . . . . . . 9 class 𝑖
109, 5cfv 6437 . . . . . . . 8 class (𝑤𝑖)
11 c1 10881 . . . . . . . . . 10 class 1
12 caddc 10883 . . . . . . . . . 10 class +
139, 11, 12co 7284 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6437 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4564 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1538 . . . . . . . 8 class 𝑔
17 cedg 27426 . . . . . . . 8 class Edg
1816, 17cfv 6437 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2107 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 10880 . . . . . . 7 class 0
21 chash 14053 . . . . . . . . 9 class
225, 21cfv 6437 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11214 . . . . . . . 8 class
2422, 11, 23co 7284 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13391 . . . . . . 7 class ..^
2620, 24, 25co 7284 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3065 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14274 . . . . . . . 8 class lastS
295, 28cfv 6437 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6437 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4564 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2107 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 27375 . . . . . 6 class Vtx
3516, 34cfv 6437 . . . . 5 class (Vtx‘𝑔)
3635cword 14226 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3069 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5158 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1539 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  28356
  Copyright terms: Public domain W3C validator