MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29502
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29295. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
Distinct variable group:   𝑔,𝑖,𝑀

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29501 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3472 . . 3 class V
4 vw . . . . . . 7 setvar 𝑀
54cv 1538 . . . . . 6 class 𝑀
6 c0 4321 . . . . . 6 class βˆ…
75, 6wne 2938 . . . . 5 wff 𝑀 β‰  βˆ…
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1538 . . . . . . . . 9 class 𝑖
109, 5cfv 6542 . . . . . . . 8 class (π‘€β€˜π‘–)
11 c1 11113 . . . . . . . . . 10 class 1
12 caddc 11115 . . . . . . . . . 10 class +
139, 11, 12co 7411 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6542 . . . . . . . 8 class (π‘€β€˜(𝑖 + 1))
1510, 14cpr 4629 . . . . . . 7 class {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))}
162cv 1538 . . . . . . . 8 class 𝑔
17 cedg 28574 . . . . . . . 8 class Edg
1816, 17cfv 6542 . . . . . . 7 class (Edgβ€˜π‘”)
1915, 18wcel 2104 . . . . . 6 wff {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”)
20 cc0 11112 . . . . . . 7 class 0
21 chash 14294 . . . . . . . . 9 class β™―
225, 21cfv 6542 . . . . . . . 8 class (β™―β€˜π‘€)
23 cmin 11448 . . . . . . . 8 class βˆ’
2422, 11, 23co 7411 . . . . . . 7 class ((β™―β€˜π‘€) βˆ’ 1)
25 cfzo 13631 . . . . . . 7 class ..^
2620, 24, 25co 7411 . . . . . 6 class (0..^((β™―β€˜π‘€) βˆ’ 1))
2719, 8, 26wral 3059 . . . . 5 wff βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”)
28 clsw 14516 . . . . . . . 8 class lastS
295, 28cfv 6542 . . . . . . 7 class (lastSβ€˜π‘€)
3020, 5cfv 6542 . . . . . . 7 class (π‘€β€˜0)
3129, 30cpr 4629 . . . . . 6 class {(lastSβ€˜π‘€), (π‘€β€˜0)}
3231, 18wcel 2104 . . . . 5 wff {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”)
337, 27, 32w3a 1085 . . . 4 wff (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))
34 cvtx 28523 . . . . . 6 class Vtx
3516, 34cfv 6542 . . . . 5 class (Vtxβ€˜π‘”)
3635cword 14468 . . . 4 class Word (Vtxβ€˜π‘”)
3733, 4, 36crab 3430 . . 3 class {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))}
382, 3, 37cmpt 5230 . 2 class (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
391, 38wceq 1539 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29503
  Copyright terms: Public domain W3C validator