MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29235
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29028. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
Distinct variable group:   𝑔,𝑖,𝑀

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29234 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3475 . . 3 class V
4 vw . . . . . . 7 setvar 𝑀
54cv 1541 . . . . . 6 class 𝑀
6 c0 4323 . . . . . 6 class βˆ…
75, 6wne 2941 . . . . 5 wff 𝑀 β‰  βˆ…
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1541 . . . . . . . . 9 class 𝑖
109, 5cfv 6544 . . . . . . . 8 class (π‘€β€˜π‘–)
11 c1 11111 . . . . . . . . . 10 class 1
12 caddc 11113 . . . . . . . . . 10 class +
139, 11, 12co 7409 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6544 . . . . . . . 8 class (π‘€β€˜(𝑖 + 1))
1510, 14cpr 4631 . . . . . . 7 class {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))}
162cv 1541 . . . . . . . 8 class 𝑔
17 cedg 28307 . . . . . . . 8 class Edg
1816, 17cfv 6544 . . . . . . 7 class (Edgβ€˜π‘”)
1915, 18wcel 2107 . . . . . 6 wff {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”)
20 cc0 11110 . . . . . . 7 class 0
21 chash 14290 . . . . . . . . 9 class β™―
225, 21cfv 6544 . . . . . . . 8 class (β™―β€˜π‘€)
23 cmin 11444 . . . . . . . 8 class βˆ’
2422, 11, 23co 7409 . . . . . . 7 class ((β™―β€˜π‘€) βˆ’ 1)
25 cfzo 13627 . . . . . . 7 class ..^
2620, 24, 25co 7409 . . . . . 6 class (0..^((β™―β€˜π‘€) βˆ’ 1))
2719, 8, 26wral 3062 . . . . 5 wff βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”)
28 clsw 14512 . . . . . . . 8 class lastS
295, 28cfv 6544 . . . . . . 7 class (lastSβ€˜π‘€)
3020, 5cfv 6544 . . . . . . 7 class (π‘€β€˜0)
3129, 30cpr 4631 . . . . . 6 class {(lastSβ€˜π‘€), (π‘€β€˜0)}
3231, 18wcel 2107 . . . . 5 wff {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”)
337, 27, 32w3a 1088 . . . 4 wff (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))
34 cvtx 28256 . . . . . 6 class Vtx
3516, 34cfv 6544 . . . . 5 class (Vtxβ€˜π‘”)
3635cword 14464 . . . 4 class Word (Vtxβ€˜π‘”)
3733, 4, 36crab 3433 . . 3 class {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))}
382, 3, 37cmpt 5232 . 2 class (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
391, 38wceq 1542 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29236
  Copyright terms: Public domain W3C validator