MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29944
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29734. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29943 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3438 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1539 . . . . . 6 class 𝑤
6 c0 4286 . . . . . 6 class
75, 6wne 2925 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1539 . . . . . . . . 9 class 𝑖
109, 5cfv 6486 . . . . . . . 8 class (𝑤𝑖)
11 c1 11029 . . . . . . . . . 10 class 1
12 caddc 11031 . . . . . . . . . 10 class +
139, 11, 12co 7353 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6486 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4581 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1539 . . . . . . . 8 class 𝑔
17 cedg 29010 . . . . . . . 8 class Edg
1816, 17cfv 6486 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2109 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11028 . . . . . . 7 class 0
21 chash 14255 . . . . . . . . 9 class
225, 21cfv 6486 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11365 . . . . . . . 8 class
2422, 11, 23co 7353 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13575 . . . . . . 7 class ..^
2620, 24, 25co 7353 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3044 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14487 . . . . . . . 8 class lastS
295, 28cfv 6486 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6486 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4581 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2109 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 28959 . . . . . 6 class Vtx
3516, 34cfv 6486 . . . . 5 class (Vtx‘𝑔)
3635cword 14438 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3396 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5176 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1540 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29945
  Copyright terms: Public domain W3C validator