MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29918
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29708. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29917 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3450 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1539 . . . . . 6 class 𝑤
6 c0 4299 . . . . . 6 class
75, 6wne 2926 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1539 . . . . . . . . 9 class 𝑖
109, 5cfv 6514 . . . . . . . 8 class (𝑤𝑖)
11 c1 11076 . . . . . . . . . 10 class 1
12 caddc 11078 . . . . . . . . . 10 class +
139, 11, 12co 7390 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6514 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4594 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1539 . . . . . . . 8 class 𝑔
17 cedg 28981 . . . . . . . 8 class Edg
1816, 17cfv 6514 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2109 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11075 . . . . . . 7 class 0
21 chash 14302 . . . . . . . . 9 class
225, 21cfv 6514 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11412 . . . . . . . 8 class
2422, 11, 23co 7390 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13622 . . . . . . 7 class ..^
2620, 24, 25co 7390 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3045 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14534 . . . . . . . 8 class lastS
295, 28cfv 6514 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6514 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4594 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2109 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 28930 . . . . . 6 class Vtx
3516, 34cfv 6514 . . . . 5 class (Vtx‘𝑔)
3635cword 14485 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3408 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5191 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1540 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29919
  Copyright terms: Public domain W3C validator