MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 30014
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29807. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 30013 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3488 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1536 . . . . . 6 class 𝑤
6 c0 4352 . . . . . 6 class
75, 6wne 2946 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1536 . . . . . . . . 9 class 𝑖
109, 5cfv 6573 . . . . . . . 8 class (𝑤𝑖)
11 c1 11185 . . . . . . . . . 10 class 1
12 caddc 11187 . . . . . . . . . 10 class +
139, 11, 12co 7448 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6573 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4650 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1536 . . . . . . . 8 class 𝑔
17 cedg 29082 . . . . . . . 8 class Edg
1816, 17cfv 6573 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2108 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11184 . . . . . . 7 class 0
21 chash 14379 . . . . . . . . 9 class
225, 21cfv 6573 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11520 . . . . . . . 8 class
2422, 11, 23co 7448 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13711 . . . . . . 7 class ..^
2620, 24, 25co 7448 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3067 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14610 . . . . . . . 8 class lastS
295, 28cfv 6573 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6573 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4650 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2108 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1087 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 29031 . . . . . 6 class Vtx
3516, 34cfv 6573 . . . . 5 class (Vtx‘𝑔)
3635cword 14562 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3443 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5249 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1537 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  30015
  Copyright terms: Public domain W3C validator