MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29232
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29025. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
Distinct variable group:   𝑔,𝑖,𝑀

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29231 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 vw . . . . . . 7 setvar 𝑀
54cv 1540 . . . . . 6 class 𝑀
6 c0 4322 . . . . . 6 class βˆ…
75, 6wne 2940 . . . . 5 wff 𝑀 β‰  βˆ…
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1540 . . . . . . . . 9 class 𝑖
109, 5cfv 6543 . . . . . . . 8 class (π‘€β€˜π‘–)
11 c1 11110 . . . . . . . . . 10 class 1
12 caddc 11112 . . . . . . . . . 10 class +
139, 11, 12co 7408 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6543 . . . . . . . 8 class (π‘€β€˜(𝑖 + 1))
1510, 14cpr 4630 . . . . . . 7 class {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))}
162cv 1540 . . . . . . . 8 class 𝑔
17 cedg 28304 . . . . . . . 8 class Edg
1816, 17cfv 6543 . . . . . . 7 class (Edgβ€˜π‘”)
1915, 18wcel 2106 . . . . . 6 wff {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”)
20 cc0 11109 . . . . . . 7 class 0
21 chash 14289 . . . . . . . . 9 class β™―
225, 21cfv 6543 . . . . . . . 8 class (β™―β€˜π‘€)
23 cmin 11443 . . . . . . . 8 class βˆ’
2422, 11, 23co 7408 . . . . . . 7 class ((β™―β€˜π‘€) βˆ’ 1)
25 cfzo 13626 . . . . . . 7 class ..^
2620, 24, 25co 7408 . . . . . 6 class (0..^((β™―β€˜π‘€) βˆ’ 1))
2719, 8, 26wral 3061 . . . . 5 wff βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”)
28 clsw 14511 . . . . . . . 8 class lastS
295, 28cfv 6543 . . . . . . 7 class (lastSβ€˜π‘€)
3020, 5cfv 6543 . . . . . . 7 class (π‘€β€˜0)
3129, 30cpr 4630 . . . . . 6 class {(lastSβ€˜π‘€), (π‘€β€˜0)}
3231, 18wcel 2106 . . . . 5 wff {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”)
337, 27, 32w3a 1087 . . . 4 wff (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))
34 cvtx 28253 . . . . . 6 class Vtx
3516, 34cfv 6543 . . . . 5 class (Vtxβ€˜π‘”)
3635cword 14463 . . . 4 class Word (Vtxβ€˜π‘”)
3733, 4, 36crab 3432 . . 3 class {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))}
382, 3, 37cmpt 5231 . 2 class (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
391, 38wceq 1541 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29233
  Copyright terms: Public domain W3C validator