MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29960
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29750. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29959 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1540 . . . . . 6 class 𝑤
6 c0 4283 . . . . . 6 class
75, 6wne 2928 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1540 . . . . . . . . 9 class 𝑖
109, 5cfv 6481 . . . . . . . 8 class (𝑤𝑖)
11 c1 11007 . . . . . . . . . 10 class 1
12 caddc 11009 . . . . . . . . . 10 class +
139, 11, 12co 7346 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6481 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4578 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1540 . . . . . . . 8 class 𝑔
17 cedg 29026 . . . . . . . 8 class Edg
1816, 17cfv 6481 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2111 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11006 . . . . . . 7 class 0
21 chash 14237 . . . . . . . . 9 class
225, 21cfv 6481 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11344 . . . . . . . 8 class
2422, 11, 23co 7346 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13554 . . . . . . 7 class ..^
2620, 24, 25co 7346 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3047 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14469 . . . . . . . 8 class lastS
295, 28cfv 6481 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6481 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4578 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2111 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 28975 . . . . . 6 class Vtx
3516, 34cfv 6481 . . . . 5 class (Vtx‘𝑔)
3635cword 14420 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3395 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5172 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1541 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29961
  Copyright terms: Public domain W3C validator