MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 27859
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 27652. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 27858 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3410 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1538 . . . . . 6 class 𝑤
6 c0 4226 . . . . . 6 class
75, 6wne 2952 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1538 . . . . . . . . 9 class 𝑖
109, 5cfv 6336 . . . . . . . 8 class (𝑤𝑖)
11 c1 10569 . . . . . . . . . 10 class 1
12 caddc 10571 . . . . . . . . . 10 class +
139, 11, 12co 7151 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6336 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4525 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1538 . . . . . . . 8 class 𝑔
17 cedg 26932 . . . . . . . 8 class Edg
1816, 17cfv 6336 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2112 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 10568 . . . . . . 7 class 0
21 chash 13733 . . . . . . . . 9 class
225, 21cfv 6336 . . . . . . . 8 class (♯‘𝑤)
23 cmin 10901 . . . . . . . 8 class
2422, 11, 23co 7151 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13075 . . . . . . 7 class ..^
2620, 24, 25co 7151 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3071 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 13954 . . . . . . . 8 class lastS
295, 28cfv 6336 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6336 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4525 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2112 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1085 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 26881 . . . . . 6 class Vtx
3516, 34cfv 6336 . . . . 5 class (Vtx‘𝑔)
3635cword 13906 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3075 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5113 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1539 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  27860
  Copyright terms: Public domain W3C validator