MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clwwlk Structured version   Visualization version   GIF version

Definition df-clwwlk 29911
Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29701. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
df-clwwlk ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Distinct variable group:   𝑔,𝑖,𝑤

Detailed syntax breakdown of Definition df-clwwlk
StepHypRef Expression
1 cclwwlk 29910 . 2 class ClWWalks
2 vg . . 3 setvar 𝑔
3 cvv 3447 . . 3 class V
4 vw . . . . . . 7 setvar 𝑤
54cv 1539 . . . . . 6 class 𝑤
6 c0 4296 . . . . . 6 class
75, 6wne 2925 . . . . 5 wff 𝑤 ≠ ∅
8 vi . . . . . . . . . 10 setvar 𝑖
98cv 1539 . . . . . . . . 9 class 𝑖
109, 5cfv 6511 . . . . . . . 8 class (𝑤𝑖)
11 c1 11069 . . . . . . . . . 10 class 1
12 caddc 11071 . . . . . . . . . 10 class +
139, 11, 12co 7387 . . . . . . . . 9 class (𝑖 + 1)
1413, 5cfv 6511 . . . . . . . 8 class (𝑤‘(𝑖 + 1))
1510, 14cpr 4591 . . . . . . 7 class {(𝑤𝑖), (𝑤‘(𝑖 + 1))}
162cv 1539 . . . . . . . 8 class 𝑔
17 cedg 28974 . . . . . . . 8 class Edg
1816, 17cfv 6511 . . . . . . 7 class (Edg‘𝑔)
1915, 18wcel 2109 . . . . . 6 wff {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
20 cc0 11068 . . . . . . 7 class 0
21 chash 14295 . . . . . . . . 9 class
225, 21cfv 6511 . . . . . . . 8 class (♯‘𝑤)
23 cmin 11405 . . . . . . . 8 class
2422, 11, 23co 7387 . . . . . . 7 class ((♯‘𝑤) − 1)
25 cfzo 13615 . . . . . . 7 class ..^
2620, 24, 25co 7387 . . . . . 6 class (0..^((♯‘𝑤) − 1))
2719, 8, 26wral 3044 . . . . 5 wff 𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔)
28 clsw 14527 . . . . . . . 8 class lastS
295, 28cfv 6511 . . . . . . 7 class (lastS‘𝑤)
3020, 5cfv 6511 . . . . . . 7 class (𝑤‘0)
3129, 30cpr 4591 . . . . . 6 class {(lastS‘𝑤), (𝑤‘0)}
3231, 18wcel 2109 . . . . 5 wff {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)
337, 27, 32w3a 1086 . . . 4 wff (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))
34 cvtx 28923 . . . . . 6 class Vtx
3516, 34cfv 6511 . . . . 5 class (Vtx‘𝑔)
3635cword 14478 . . . 4 class Word (Vtx‘𝑔)
3733, 4, 36crab 3405 . . 3 class {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}
382, 3, 37cmpt 5188 . 2 class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
391, 38wceq 1540 1 wff ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
Colors of variables: wff setvar class
This definition is referenced by:  clwwlk  29912
  Copyright terms: Public domain W3C validator