Step | Hyp | Ref
| Expression |
1 | | cclwwlk 29231 |
. 2
class
ClWWalks |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vw |
. . . . . . 7
setvar π€ |
5 | 4 | cv 1540 |
. . . . . 6
class π€ |
6 | | c0 4322 |
. . . . . 6
class
β
|
7 | 5, 6 | wne 2940 |
. . . . 5
wff π€ β β
|
8 | | vi |
. . . . . . . . . 10
setvar π |
9 | 8 | cv 1540 |
. . . . . . . . 9
class π |
10 | 9, 5 | cfv 6543 |
. . . . . . . 8
class (π€βπ) |
11 | | c1 11110 |
. . . . . . . . . 10
class
1 |
12 | | caddc 11112 |
. . . . . . . . . 10
class
+ |
13 | 9, 11, 12 | co 7408 |
. . . . . . . . 9
class (π + 1) |
14 | 13, 5 | cfv 6543 |
. . . . . . . 8
class (π€β(π + 1)) |
15 | 10, 14 | cpr 4630 |
. . . . . . 7
class {(π€βπ), (π€β(π + 1))} |
16 | 2 | cv 1540 |
. . . . . . . 8
class π |
17 | | cedg 28304 |
. . . . . . . 8
class
Edg |
18 | 16, 17 | cfv 6543 |
. . . . . . 7
class
(Edgβπ) |
19 | 15, 18 | wcel 2106 |
. . . . . 6
wff {(π€βπ), (π€β(π + 1))} β (Edgβπ) |
20 | | cc0 11109 |
. . . . . . 7
class
0 |
21 | | chash 14289 |
. . . . . . . . 9
class
β― |
22 | 5, 21 | cfv 6543 |
. . . . . . . 8
class
(β―βπ€) |
23 | | cmin 11443 |
. . . . . . . 8
class
β |
24 | 22, 11, 23 | co 7408 |
. . . . . . 7
class
((β―βπ€)
β 1) |
25 | | cfzo 13626 |
. . . . . . 7
class
..^ |
26 | 20, 24, 25 | co 7408 |
. . . . . 6
class
(0..^((β―βπ€) β 1)) |
27 | 19, 8, 26 | wral 3061 |
. . . . 5
wff
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ) |
28 | | clsw 14511 |
. . . . . . . 8
class
lastS |
29 | 5, 28 | cfv 6543 |
. . . . . . 7
class
(lastSβπ€) |
30 | 20, 5 | cfv 6543 |
. . . . . . 7
class (π€β0) |
31 | 29, 30 | cpr 4630 |
. . . . . 6
class
{(lastSβπ€),
(π€β0)} |
32 | 31, 18 | wcel 2106 |
. . . . 5
wff
{(lastSβπ€),
(π€β0)} β
(Edgβπ) |
33 | 7, 27, 32 | w3a 1087 |
. . . 4
wff (π€ β β
β§
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ) β§ {(lastSβπ€), (π€β0)} β (Edgβπ)) |
34 | | cvtx 28253 |
. . . . . 6
class
Vtx |
35 | 16, 34 | cfv 6543 |
. . . . 5
class
(Vtxβπ) |
36 | 35 | cword 14463 |
. . . 4
class Word
(Vtxβπ) |
37 | 33, 4, 36 | crab 3432 |
. . 3
class {π€ β Word (Vtxβπ) β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ) β§ {(lastSβπ€), (π€β0)} β (Edgβπ))} |
38 | 2, 3, 37 | cmpt 5231 |
. 2
class (π β V β¦ {π€ β Word (Vtxβπ) β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ) β§ {(lastSβπ€), (π€β0)} β (Edgβπ))}) |
39 | 1, 38 | wceq 1541 |
1
wff ClWWalks =
(π β V β¦ {π€ β Word (Vtxβπ) β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ) β§ {(lastSβπ€), (π€β0)} β (Edgβπ))}) |