MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlk Structured version   Visualization version   GIF version

Theorem clwwlk 30015
Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Hypotheses
Ref Expression
clwwlk.v 𝑉 = (Vtx‘𝐺)
clwwlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlk (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Distinct variable groups:   𝑖,𝐺,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐸(𝑤,𝑖)   𝑉(𝑖)

Proof of Theorem clwwlk
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-clwwlk 30014 . . 3 ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
2 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 clwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2798 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
5 wrdeq 14584 . . . . 5 ((Vtx‘𝑔) = 𝑉 → Word (Vtx‘𝑔) = Word 𝑉)
64, 5syl 17 . . . 4 (𝑔 = 𝐺 → Word (Vtx‘𝑔) = Word 𝑉)
7 fveq2 6920 . . . . . . . 8 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
8 clwwlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
97, 8eqtr4di 2798 . . . . . . 7 (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸)
109eleq2d 2830 . . . . . 6 (𝑔 = 𝐺 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1110ralbidv 3184 . . . . 5 (𝑔 = 𝐺 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
129eleq2d 2830 . . . . 5 (𝑔 = 𝐺 → ({(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔) ↔ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
1311, 123anbi23d 1439 . . . 4 (𝑔 = 𝐺 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)) ↔ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)))
146, 13rabeqbidv 3462 . . 3 (𝑔 = 𝐺 → {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
15 id 22 . . 3 (𝐺 ∈ V → 𝐺 ∈ V)
163fvexi 6934 . . . . 5 𝑉 ∈ V
1716a1i 11 . . . 4 (𝐺 ∈ V → 𝑉 ∈ V)
18 wrdexg 14572 . . . 4 (𝑉 ∈ V → Word 𝑉 ∈ V)
19 rabexg 5355 . . . 4 (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
2017, 18, 193syl 18 . . 3 (𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
211, 14, 15, 20fvmptd3 7052 . 2 (𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
22 fvprc 6912 . . 3 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅)
23 noel 4360 . . . . . . . 8 ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ ∅
24 fvprc 6912 . . . . . . . . . 10 𝐺 ∈ V → (Edg‘𝐺) = ∅)
258, 24eqtrid 2792 . . . . . . . . 9 𝐺 ∈ V → 𝐸 = ∅)
2625eleq2d 2830 . . . . . . . 8 𝐺 ∈ V → ({(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸 ↔ {(lastS‘𝑤), (𝑤‘0)} ∈ ∅))
2723, 26mtbiri 327 . . . . . . 7 𝐺 ∈ V → ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)
2827adantr 480 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)
2928intn3an3d 1481 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
3029ralrimiva 3152 . . . 4 𝐺 ∈ V → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
31 rabeq0 4411 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
3230, 31sylibr 234 . . 3 𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅)
3322, 32eqtr4d 2783 . 2 𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
3421, 33pm2.61i 182 1 (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  c0 4352  {cpr 4650  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610  Vtxcvtx 29031  Edgcedg 29082  ClWWalkscclwwlk 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-clwwlk 30014
This theorem is referenced by:  isclwwlk  30016  clwwlksswrd  30019
  Copyright terms: Public domain W3C validator