MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlk Structured version   Visualization version   GIF version

Theorem clwwlk 30002
Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Hypotheses
Ref Expression
clwwlk.v 𝑉 = (Vtx‘𝐺)
clwwlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlk (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Distinct variable groups:   𝑖,𝐺,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐸(𝑤,𝑖)   𝑉(𝑖)

Proof of Theorem clwwlk
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-clwwlk 30001 . . 3 ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
2 fveq2 6906 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 clwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2795 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
5 wrdeq 14574 . . . . 5 ((Vtx‘𝑔) = 𝑉 → Word (Vtx‘𝑔) = Word 𝑉)
64, 5syl 17 . . . 4 (𝑔 = 𝐺 → Word (Vtx‘𝑔) = Word 𝑉)
7 fveq2 6906 . . . . . . . 8 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
8 clwwlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
97, 8eqtr4di 2795 . . . . . . 7 (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸)
109eleq2d 2827 . . . . . 6 (𝑔 = 𝐺 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1110ralbidv 3178 . . . . 5 (𝑔 = 𝐺 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
129eleq2d 2827 . . . . 5 (𝑔 = 𝐺 → ({(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔) ↔ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
1311, 123anbi23d 1441 . . . 4 (𝑔 = 𝐺 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)) ↔ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)))
146, 13rabeqbidv 3455 . . 3 (𝑔 = 𝐺 → {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
15 id 22 . . 3 (𝐺 ∈ V → 𝐺 ∈ V)
163fvexi 6920 . . . . 5 𝑉 ∈ V
1716a1i 11 . . . 4 (𝐺 ∈ V → 𝑉 ∈ V)
18 wrdexg 14562 . . . 4 (𝑉 ∈ V → Word 𝑉 ∈ V)
19 rabexg 5337 . . . 4 (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
2017, 18, 193syl 18 . . 3 (𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
211, 14, 15, 20fvmptd3 7039 . 2 (𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
22 fvprc 6898 . . 3 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅)
23 noel 4338 . . . . . . . 8 ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ ∅
24 fvprc 6898 . . . . . . . . . 10 𝐺 ∈ V → (Edg‘𝐺) = ∅)
258, 24eqtrid 2789 . . . . . . . . 9 𝐺 ∈ V → 𝐸 = ∅)
2625eleq2d 2827 . . . . . . . 8 𝐺 ∈ V → ({(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸 ↔ {(lastS‘𝑤), (𝑤‘0)} ∈ ∅))
2723, 26mtbiri 327 . . . . . . 7 𝐺 ∈ V → ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)
2827adantr 480 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)
2928intn3an3d 1483 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
3029ralrimiva 3146 . . . 4 𝐺 ∈ V → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
31 rabeq0 4388 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
3230, 31sylibr 234 . . 3 𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅)
3322, 32eqtr4d 2780 . 2 𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
3421, 33pm2.61i 182 1 (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  c0 4333  {cpr 4628  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  ..^cfzo 13694  chash 14369  Word cword 14552  lastSclsw 14600  Vtxcvtx 29013  Edgcedg 29064  ClWWalkscclwwlk 30000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-clwwlk 30001
This theorem is referenced by:  isclwwlk  30003  clwwlksswrd  30006
  Copyright terms: Public domain W3C validator