MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlk Structured version   Visualization version   GIF version

Theorem clwwlk 29912
Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Hypotheses
Ref Expression
clwwlk.v 𝑉 = (Vtx‘𝐺)
clwwlk.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlk (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Distinct variable groups:   𝑖,𝐺,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐸(𝑤,𝑖)   𝑉(𝑖)

Proof of Theorem clwwlk
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-clwwlk 29911 . . 3 ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
2 fveq2 6858 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 clwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2782 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
5 wrdeq 14501 . . . . 5 ((Vtx‘𝑔) = 𝑉 → Word (Vtx‘𝑔) = Word 𝑉)
64, 5syl 17 . . . 4 (𝑔 = 𝐺 → Word (Vtx‘𝑔) = Word 𝑉)
7 fveq2 6858 . . . . . . . 8 (𝑔 = 𝐺 → (Edg‘𝑔) = (Edg‘𝐺))
8 clwwlk.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
97, 8eqtr4di 2782 . . . . . . 7 (𝑔 = 𝐺 → (Edg‘𝑔) = 𝐸)
109eleq2d 2814 . . . . . 6 (𝑔 = 𝐺 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
1110ralbidv 3156 . . . . 5 (𝑔 = 𝐺 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ↔ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
129eleq2d 2814 . . . . 5 (𝑔 = 𝐺 → ({(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔) ↔ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
1311, 123anbi23d 1441 . . . 4 (𝑔 = 𝐺 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔)) ↔ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)))
146, 13rabeqbidv 3424 . . 3 (𝑔 = 𝐺 → {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))} = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
15 id 22 . . 3 (𝐺 ∈ V → 𝐺 ∈ V)
163fvexi 6872 . . . . 5 𝑉 ∈ V
1716a1i 11 . . . 4 (𝐺 ∈ V → 𝑉 ∈ V)
18 wrdexg 14489 . . . 4 (𝑉 ∈ V → Word 𝑉 ∈ V)
19 rabexg 5292 . . . 4 (Word 𝑉 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
2017, 18, 193syl 18 . . 3 (𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} ∈ V)
211, 14, 15, 20fvmptd3 6991 . 2 (𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
22 fvprc 6850 . . 3 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅)
23 noel 4301 . . . . . . . 8 ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ ∅
24 fvprc 6850 . . . . . . . . . 10 𝐺 ∈ V → (Edg‘𝐺) = ∅)
258, 24eqtrid 2776 . . . . . . . . 9 𝐺 ∈ V → 𝐸 = ∅)
2625eleq2d 2814 . . . . . . . 8 𝐺 ∈ V → ({(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸 ↔ {(lastS‘𝑤), (𝑤‘0)} ∈ ∅))
2723, 26mtbiri 327 . . . . . . 7 𝐺 ∈ V → ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)
2827adantr 480 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)
2928intn3an3d 1483 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉) → ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
3029ralrimiva 3125 . . . 4 𝐺 ∈ V → ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
31 rabeq0 4351 . . . 4 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸))
3230, 31sylibr 234 . . 3 𝐺 ∈ V → {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)} = ∅)
3322, 32eqtr4d 2767 . 2 𝐺 ∈ V → (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)})
3421, 33pm2.61i 182 1 (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  c0 4296  {cpr 4591  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  ..^cfzo 13615  chash 14295  Word cword 14478  lastSclsw 14527  Vtxcvtx 28923  Edgcedg 28974  ClWWalkscclwwlk 29910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-clwwlk 29911
This theorem is referenced by:  isclwwlk  29913  clwwlksswrd  29916
  Copyright terms: Public domain W3C validator