HomeHome Metamath Proof Explorer
Theorem List (p. 296 of 481)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30640)
  Hilbert Space Explorer  Hilbert Space Explorer
(30641-32163)
  Users' Mathboxes  Users' Mathboxes
(32164-48040)
 

Theorem List for Metamath Proof Explorer - 29501-29600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclwlkwlk 29501 Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
(π‘Š ∈ (ClWalksβ€˜πΊ) β†’ π‘Š ∈ (Walksβ€˜πΊ))
 
Theoremclwlkswks 29502 Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 16-Feb-2021.)
(ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ)
 
Theoremisclwlke 29503* Properties of a pair of functions to be a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ 𝑋 β†’ (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))))
 
Theoremisclwlkupgr 29504* Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 11-Apr-2021.) (Revised by AV, 28-Oct-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    β‡’   (𝐺 ∈ UPGraph β†’ (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))))
 
Theoremclwlkcomp 29505* A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = (1st β€˜π‘Š)    &   π‘ƒ = (2nd β€˜π‘Š)    β‡’   ((𝐺 ∈ 𝑋 ∧ π‘Š ∈ (𝑆 Γ— 𝑇)) β†’ (π‘Š ∈ (ClWalksβ€˜πΊ) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))))
 
Theoremclwlkcompim 29506* Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = (1st β€˜π‘Š)    &   π‘ƒ = (2nd β€˜π‘Š)    β‡’   (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘˜))) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ)))))
 
Theoremupgrclwlkcompim 29507* Implications for the properties of the components of a closed walk in a pseudograph. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 2-May-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   πΉ = (1st β€˜π‘Š)    &   π‘ƒ = (2nd β€˜π‘Š)    β‡’   ((𝐺 ∈ UPGraph ∧ π‘Š ∈ (ClWalksβ€˜πΊ)) β†’ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
 
Theoremclwlkcompbp 29508 Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.)
𝐹 = (1st β€˜π‘Š)    &   π‘ƒ = (2nd β€˜π‘Š)    β‡’   (π‘Š ∈ (ClWalksβ€˜πΊ) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
 
Theoremclwlkl1loop 29509 A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021.)
((Fun (iEdgβ€˜πΊ) ∧ 𝐹(ClWalksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 1) β†’ ((π‘ƒβ€˜0) = (π‘ƒβ€˜1) ∧ {(π‘ƒβ€˜0)} ∈ (Edgβ€˜πΊ)))
 
17.3.6  Circuits and cycles
 
Syntaxccrcts 29510 Extend class notation with circuits (in a graph).
class Circuits
 
Syntaxccycls 29511 Extend class notation with cycles (in a graph).
class Cycles
 
Definitiondf-crcts 29512* Define the set of all circuits (in an undirected graph).

According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A circuit can be a closed walk allowing repetitions of vertices but not edges"; according to Wikipedia ("Glossary of graph theory terms", https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms, 3-Oct-2017): "A circuit may refer to ... a trail (a closed tour without repeated edges), ...".

Following Bollobas ("A trail whose endvertices coincide (a closed trail) is called a circuit.", see Definition of [Bollobas] p. 5.), a circuit is a closed trail without repeated edges. So the circuit is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.) (Revised by AV, 31-Jan-2021.)

Circuits = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))})
 
Definitiondf-cycls 29513* Define the set of all (simple) cycles (in an undirected graph).

According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A simple cycle may be defined either as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex."

According to Bollobas: "If a walk W = x0 x1 ... x(l) is such that l >= 3, x0=x(l), and the vertices x(i), 0 < i < l, are distinct from each other and x0, then W is said to be a cycle." See Definition of [Bollobas] p. 5.

However, since a walk consisting of distinct vertices (except the first and the last vertex) is a path, a cycle can be defined as path whose first and last vertices coincide. So a cycle is represented by the following sequence: p(0) e(f(1)) p(1) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.) (Revised by AV, 31-Jan-2021.)

Cycles = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Pathsβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))})
 
Theoremcrcts 29514* The set of circuits (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
(Circuitsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))}
 
Theoremcycls 29515* The set of cycles (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
(Cyclesβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))}
 
Theoremiscrct 29516 Sufficient and necessary conditions for a pair of functions to be a circuit (in an undirected graph): A pair of function "is" (represents) a circuit iff it is a closed trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.)
(𝐹(Circuitsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
 
Theoremiscycl 29517 Sufficient and necessary conditions for a pair of functions to be a cycle (in an undirected graph): A pair of function "is" (represents) a cycle iff it is a closed path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.)
(𝐹(Cyclesβ€˜πΊ)𝑃 ↔ (𝐹(Pathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
 
Theoremcrctprop 29518 The properties of a circuit: A circuit is a closed trail. (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
(𝐹(Circuitsβ€˜πΊ)𝑃 β†’ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
 
Theoremcyclprop 29519 The properties of a cycle: A cycle is a closed path. (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
(𝐹(Cyclesβ€˜πΊ)𝑃 β†’ (𝐹(Pathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
 
Theoremcrctisclwlk 29520 A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
(𝐹(Circuitsβ€˜πΊ)𝑃 β†’ 𝐹(ClWalksβ€˜πΊ)𝑃)
 
Theoremcrctistrl 29521 A circuit is a trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
(𝐹(Circuitsβ€˜πΊ)𝑃 β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
 
Theoremcrctiswlk 29522 A circuit is a walk. (Contributed by AV, 6-Apr-2021.)
(𝐹(Circuitsβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)
 
Theoremcyclispth 29523 A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
(𝐹(Cyclesβ€˜πΊ)𝑃 β†’ 𝐹(Pathsβ€˜πΊ)𝑃)
 
Theoremcycliswlk 29524 A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 31-Jan-2021.)
(𝐹(Cyclesβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)
 
Theoremcycliscrct 29525 A cycle is a circuit. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
(𝐹(Cyclesβ€˜πΊ)𝑃 β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)
 
Theoremcyclnspth 29526 A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
(𝐹 β‰  βˆ… β†’ (𝐹(Cyclesβ€˜πΊ)𝑃 β†’ Β¬ 𝐹(SPathsβ€˜πΊ)𝑃))
 
Theoremcyclispthon 29527 A cycle is a path starting and ending at its first vertex. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
(𝐹(Cyclesβ€˜πΊ)𝑃 β†’ 𝐹((π‘ƒβ€˜0)(PathsOnβ€˜πΊ)(π‘ƒβ€˜0))𝑃)
 
Theoremlfgrn1cycl 29528* In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    β‡’   (𝐼:dom 𝐼⟢{π‘₯ ∈ 𝒫 𝑉 ∣ 2 ≀ (β™―β€˜π‘₯)} β†’ (𝐹(Cyclesβ€˜πΊ)𝑃 β†’ (β™―β€˜πΉ) β‰  1))
 
Theoremusgr2trlncrct 29529 In a simple graph, any trail of length 2 is not a circuit. (Contributed by AV, 5-Jun-2021.)
((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2) β†’ (𝐹(Trailsβ€˜πΊ)𝑃 β†’ Β¬ 𝐹(Circuitsβ€˜πΊ)𝑃))
 
Theoremumgrn1cycl 29530 In a multigraph graph (with no loops!) there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
((𝐺 ∈ UMGraph ∧ 𝐹(Cyclesβ€˜πΊ)𝑃) β†’ (β™―β€˜πΉ) β‰  1)
 
Theoremuspgrn2crct 29531 In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 3-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
((𝐺 ∈ USPGraph ∧ 𝐹(Circuitsβ€˜πΊ)𝑃) β†’ (β™―β€˜πΉ) β‰  2)
 
Theoremusgrn2cycl 29532 In a simple graph there are no cycles with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 4-Feb-2021.)
((𝐺 ∈ USGraph ∧ 𝐹(Cyclesβ€˜πΊ)𝑃) β†’ (β™―β€˜πΉ) β‰  2)
 
Theoremcrctcshwlkn0lem1 29533 Lemma for crctcshwlkn0 29544. (Contributed by AV, 13-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ β„•) β†’ ((𝐴 βˆ’ 𝐡) + 1) ≀ 𝐴)
 
Theoremcrctcshwlkn0lem2 29534* Lemma for crctcshwlkn0 29544. (Contributed by AV, 12-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ (1..^𝑁))    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   ((πœ‘ ∧ 𝐽 ∈ (0...(𝑁 βˆ’ 𝑆))) β†’ (π‘„β€˜π½) = (π‘ƒβ€˜(𝐽 + 𝑆)))
 
Theoremcrctcshwlkn0lem3 29535* Lemma for crctcshwlkn0 29544. (Contributed by AV, 12-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ (1..^𝑁))    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   ((πœ‘ ∧ 𝐽 ∈ (((𝑁 βˆ’ 𝑆) + 1)...𝑁)) β†’ (π‘„β€˜π½) = (π‘ƒβ€˜((𝐽 + 𝑆) βˆ’ 𝑁)))
 
Theoremcrctcshwlkn0lem4 29536* Lemma for crctcshwlkn0 29544. (Contributed by AV, 12-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ (1..^𝑁))    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ Word 𝐴)    &   (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑁)if-((π‘ƒβ€˜π‘–) = (π‘ƒβ€˜(𝑖 + 1)), (πΌβ€˜(πΉβ€˜π‘–)) = {(π‘ƒβ€˜π‘–)}, {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘–))))    β‡’   (πœ‘ β†’ βˆ€π‘— ∈ (0..^(𝑁 βˆ’ 𝑆))if-((π‘„β€˜π‘—) = (π‘„β€˜(𝑗 + 1)), (πΌβ€˜(π»β€˜π‘—)) = {(π‘„β€˜π‘—)}, {(π‘„β€˜π‘—), (π‘„β€˜(𝑗 + 1))} βŠ† (πΌβ€˜(π»β€˜π‘—))))
 
Theoremcrctcshwlkn0lem5 29537* Lemma for crctcshwlkn0 29544. (Contributed by AV, 12-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ (1..^𝑁))    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ Word 𝐴)    &   (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑁)if-((π‘ƒβ€˜π‘–) = (π‘ƒβ€˜(𝑖 + 1)), (πΌβ€˜(πΉβ€˜π‘–)) = {(π‘ƒβ€˜π‘–)}, {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘–))))    β‡’   (πœ‘ β†’ βˆ€π‘— ∈ (((𝑁 βˆ’ 𝑆) + 1)..^𝑁)if-((π‘„β€˜π‘—) = (π‘„β€˜(𝑗 + 1)), (πΌβ€˜(π»β€˜π‘—)) = {(π‘„β€˜π‘—)}, {(π‘„β€˜π‘—), (π‘„β€˜(𝑗 + 1))} βŠ† (πΌβ€˜(π»β€˜π‘—))))
 
Theoremcrctcshwlkn0lem6 29538* Lemma for crctcshwlkn0 29544. (Contributed by AV, 12-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ (1..^𝑁))    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ Word 𝐴)    &   (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑁)if-((π‘ƒβ€˜π‘–) = (π‘ƒβ€˜(𝑖 + 1)), (πΌβ€˜(πΉβ€˜π‘–)) = {(π‘ƒβ€˜π‘–)}, {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘–))))    &   (πœ‘ β†’ (π‘ƒβ€˜π‘) = (π‘ƒβ€˜0))    β‡’   ((πœ‘ ∧ 𝐽 = (𝑁 βˆ’ 𝑆)) β†’ if-((π‘„β€˜π½) = (π‘„β€˜(𝐽 + 1)), (πΌβ€˜(π»β€˜π½)) = {(π‘„β€˜π½)}, {(π‘„β€˜π½), (π‘„β€˜(𝐽 + 1))} βŠ† (πΌβ€˜(π»β€˜π½))))
 
Theoremcrctcshwlkn0lem7 29539* Lemma for crctcshwlkn0 29544. (Contributed by AV, 12-Mar-2021.)
(πœ‘ β†’ 𝑆 ∈ (1..^𝑁))    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ Word 𝐴)    &   (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑁)if-((π‘ƒβ€˜π‘–) = (π‘ƒβ€˜(𝑖 + 1)), (πΌβ€˜(πΉβ€˜π‘–)) = {(π‘ƒβ€˜π‘–)}, {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} βŠ† (πΌβ€˜(πΉβ€˜π‘–))))    &   (πœ‘ β†’ (π‘ƒβ€˜π‘) = (π‘ƒβ€˜0))    β‡’   (πœ‘ β†’ βˆ€π‘— ∈ (0..^𝑁)if-((π‘„β€˜π‘—) = (π‘„β€˜(𝑗 + 1)), (πΌβ€˜(π»β€˜π‘—)) = {(π‘„β€˜π‘—)}, {(π‘„β€˜π‘—), (π‘„β€˜(𝑗 + 1))} βŠ† (πΌβ€˜(π»β€˜π‘—))))
 
Theoremcrctcshlem1 29540 Lemma for crctcsh 29547. (Contributed by AV, 10-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    β‡’   (πœ‘ β†’ 𝑁 ∈ β„•0)
 
Theoremcrctcshlem2 29541 Lemma for crctcsh 29547. (Contributed by AV, 10-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    β‡’   (πœ‘ β†’ (β™―β€˜π») = 𝑁)
 
Theoremcrctcshlem3 29542* Lemma for crctcsh 29547. (Contributed by AV, 10-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   (πœ‘ β†’ (𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
 
Theoremcrctcshlem4 29543* Lemma for crctcsh 29547. (Contributed by AV, 10-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   ((πœ‘ ∧ 𝑆 = 0) β†’ (𝐻 = 𝐹 ∧ 𝑄 = 𝑃))
 
Theoremcrctcshwlkn0 29544* Cyclically shifting the indices of a circuit ⟨𝐹, π‘ƒβŸ© results in a walk ⟨𝐻, π‘„βŸ©. (Contributed by AV, 10-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   ((πœ‘ ∧ 𝑆 β‰  0) β†’ 𝐻(Walksβ€˜πΊ)𝑄)
 
Theoremcrctcshwlk 29545* Cyclically shifting the indices of a circuit ⟨𝐹, π‘ƒβŸ© results in a walk ⟨𝐻, π‘„βŸ©. (Contributed by AV, 10-Mar-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   (πœ‘ β†’ 𝐻(Walksβ€˜πΊ)𝑄)
 
Theoremcrctcshtrl 29546* Cyclically shifting the indices of a circuit ⟨𝐹, π‘ƒβŸ© results in a trail ⟨𝐻, π‘„βŸ©. (Contributed by AV, 14-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   (πœ‘ β†’ 𝐻(Trailsβ€˜πΊ)𝑄)
 
Theoremcrctcsh 29547* Cyclically shifting the indices of a circuit ⟨𝐹, π‘ƒβŸ© results in a circuit ⟨𝐻, π‘„βŸ©. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΌ = (iEdgβ€˜πΊ)    &   (πœ‘ β†’ 𝐹(Circuitsβ€˜πΊ)𝑃)    &   π‘ = (β™―β€˜πΉ)    &   (πœ‘ β†’ 𝑆 ∈ (0..^𝑁))    &   π» = (𝐹 cyclShift 𝑆)    &   π‘„ = (π‘₯ ∈ (0...𝑁) ↦ if(π‘₯ ≀ (𝑁 βˆ’ 𝑆), (π‘ƒβ€˜(π‘₯ + 𝑆)), (π‘ƒβ€˜((π‘₯ + 𝑆) βˆ’ 𝑁))))    β‡’   (πœ‘ β†’ 𝐻(Circuitsβ€˜πΊ)𝑄)
 
17.3.7  Walks as words

In general, a walk is an alternating sequence of vertices and edges, as defined in df-wlks 29325: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Often, it is sufficient to refer to a walk by the natural sequence of its vertices, i.e omitting its edges in its representation: p(0) p(1) ... p(n-1) p(n), see the corresponding remark in [Diestel] p. 6. The concept of a Word, see df-word 14462, is the appropriate way to define such a sequence (being finite and starting at index 0) of vertices. Therefore, it is used in Definitions df-wwlks 29553 and df-wwlksn 29554, and the representation of a walk as sequence of its vertices is called "walk as word".

Only for simple pseudographs, however, the edges can be uniquely reconstructed from such a representation. In other cases, there could be more than one edge between two adjacent vertices in the walk (in a multigraph), or two adjacent vertices could be connected by two different hyperedges involving additional vertices (in a hypergraph).

 
Syntaxcwwlks 29548 Extend class notation with walks (in a graph) as word over the set of vertices.
class WWalks
 
Syntaxcwwlksn 29549 Extend class notation with walks (in a graph) of a fixed length as word over the set of vertices.
class WWalksN
 
Syntaxcwwlksnon 29550 Extend class notation with walks between two vertices (in a graph) of a fixed length as word over the set of vertices.
class WWalksNOn
 
Syntaxcwwspthsn 29551 Extend class notation with simple paths (in a graph) of a fixed length as word over the set of vertices.
class WSPathsN
 
Syntaxcwwspthsnon 29552 Extend class notation with simple paths between two vertices (in a graph) of a fixed length as word over the set of vertices.
class WSPathsNOn
 
Definitiondf-wwlks 29553* Define the set of all walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 29325. 𝑀 = βˆ… has to be excluded because a walk always consists of at least one vertex, see wlkn0 29347. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
WWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”))})
 
Definitiondf-wwlksn 29554* Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks 29325. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
WWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)})
 
Definitiondf-wwlksnon 29555* Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
WWalksNOn = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((π‘€β€˜0) = π‘Ž ∧ (π‘€β€˜π‘›) = 𝑏)}))
 
Definitiondf-wspthsn 29556* Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
WSPathsN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜π‘”)𝑀})
 
Definitiondf-wspthsnon 29557* Define the collection of simple paths of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
WSPathsNOn = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {𝑀 ∈ (π‘Ž(𝑛 WWalksNOn 𝑔)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜π‘”)𝑏)𝑀}))
 
Theoremwwlks 29558* The set of walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (WWalksβ€˜πΊ) = {𝑀 ∈ Word 𝑉 ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ 𝐸)}
 
Theoremiswwlks 29559* A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (π‘Š ∈ (WWalksβ€˜πΊ) ↔ (π‘Š β‰  βˆ… ∧ π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
 
Theoremwwlksn 29560* The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
(𝑁 ∈ β„•0 β†’ (𝑁 WWalksN 𝐺) = {𝑀 ∈ (WWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = (𝑁 + 1)})
 
Theoremiswwlksn 29561 A word over the set of vertices representing a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
(𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))
 
Theoremwwlksnprcl 29562 Derivation of the length of a word π‘Š whose concatenation with a singleton word represents a walk of a fixed length 𝑁 (a partial reverse closure theorem). (Contributed by AV, 4-Mar-2022.)
((π‘Š ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ∈ (𝑁 WWalksN 𝐺) β†’ (β™―β€˜π‘Š) = 𝑁))
 
Theoremiswwlksnx 29563* Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) ↔ (π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ (β™―β€˜π‘Š) = (𝑁 + 1))))
 
Theoremwwlkbp 29564 Basic properties of a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 9-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (π‘Š ∈ (WWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ π‘Š ∈ Word 𝑉))
 
Theoremwwlknbp 29565 Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 20-May-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉))
 
Theoremwwlknp 29566* Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 9-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    &   πΈ = (Edgβ€˜πΊ)    β‡’   (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸))
 
Theoremwwlknbp1 29567 Other basic properties of a walk of a fixed length as word. (Contributed by AV, 8-Mar-2022.)
(π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝑁 ∈ β„•0 ∧ π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑁 + 1)))
 
Theoremwwlknvtx 29568* The symbols of a word π‘Š representing a walk of a fixed length 𝑁 are vertices. (Contributed by AV, 16-Mar-2022.)
(π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ βˆ€π‘– ∈ (0...𝑁)(π‘Šβ€˜π‘–) ∈ (Vtxβ€˜πΊ))
 
Theoremwwlknllvtx 29569 If a word π‘Š represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ ((π‘Šβ€˜0) ∈ 𝑉 ∧ (π‘Šβ€˜π‘) ∈ 𝑉))
 
Theoremwwlknlsw 29570 If a word represents a walk of a fixed length, then the last symbol of the word is the endvertex of the walk. (Contributed by AV, 8-Mar-2022.)
(π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (π‘Šβ€˜π‘) = (lastSβ€˜π‘Š))
 
Theoremwspthsn 29571* The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
(𝑁 WSPathsN 𝐺) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀}
 
Theoremiswspthn 29572* An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
(π‘Š ∈ (𝑁 WSPathsN 𝐺) ↔ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)π‘Š))
 
Theoremwspthnp 29573* Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.)
(π‘Š ∈ (𝑁 WSPathsN 𝐺) β†’ ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)π‘Š))
 
Theoremwwlksnon 29574* The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ π‘ˆ) β†’ (𝑁 WWalksNOn 𝐺) = (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = π‘Ž ∧ (π‘€β€˜π‘) = 𝑏)}))
 
Theoremwspthsnon 29575* The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ π‘ˆ) β†’ (𝑁 WSPathsNOn 𝐺) = (π‘Ž ∈ 𝑉, 𝑏 ∈ 𝑉 ↦ {𝑀 ∈ (π‘Ž(𝑁 WWalksNOn 𝐺)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜πΊ)𝑏)𝑀}))
 
Theoremiswwlksnon 29576* The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝐴(𝑁 WWalksNOn 𝐺)𝐡) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝐴 ∧ (π‘€β€˜π‘) = 𝐡)}
 
Theoremwwlksnon0 29577 Sufficient conditions for a set of walks of a fixed length between two vertices to be empty. (Contributed by AV, 15-May-2021.) (Proof shortened by AV, 21-May-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (Β¬ ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉)) β†’ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) = βˆ…)
 
Theoremwwlksonvtx 29578 If a word π‘Š represents a walk of length 2 on two classes 𝐴 and 𝐢, these classes are vertices. (Contributed by AV, 14-Mar-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (π‘Š ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐢) β†’ (𝐴 ∈ 𝑉 ∧ 𝐢 ∈ 𝑉))
 
Theoremiswspthsnon 29579* The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) = {𝑀 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∣ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑀}
 
Theoremwwlknon 29580 An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
(π‘Š ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ↔ (π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ (π‘Šβ€˜0) = 𝐴 ∧ (π‘Šβ€˜π‘) = 𝐡))
 
Theoremwspthnon 29581* An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 15-Mar-2022.)
(π‘Š ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) ↔ (π‘Š ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)π‘Š))
 
Theoremwspthnonp 29582* Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (π‘Š ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) β†’ ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (π‘Š ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐡) ∧ βˆƒπ‘“ 𝑓(𝐴(SPathsOnβ€˜πΊ)𝐡)π‘Š)))
 
Theoremwspthneq1eq2 29583 Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
((𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐡) ∧ 𝑃 ∈ (𝐢(𝑁 WSPathsNOn 𝐺)𝐷)) β†’ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷))
 
Theoremwwlksn0s 29584* The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
(0 WWalksN 𝐺) = {𝑀 ∈ Word (Vtxβ€˜πΊ) ∣ (β™―β€˜π‘€) = 1}
 
Theoremwwlkssswrd 29585 Walks (represented by words) are words. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 9-Apr-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (WWalksβ€˜πΊ) βŠ† Word 𝑉
 
Theoremwwlksn0 29586* A walk of length 0 is represented by a singleton word. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 21-May-2021.)
𝑉 = (Vtxβ€˜πΊ)    β‡’   (π‘Š ∈ (0 WWalksN 𝐺) β†’ βˆƒπ‘£ ∈ 𝑉 π‘Š = βŸ¨β€œπ‘£β€βŸ©)
 
Theorem0enwwlksnge1 29587 In graphs without edges, there are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
(((Edgβ€˜πΊ) = βˆ… ∧ 𝑁 ∈ β„•) β†’ (𝑁 WWalksN 𝐺) = βˆ…)
 
Theoremwwlkswwlksn 29588 A walk of a fixed length as word is a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 12-Apr-2021.)
(π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ π‘Š ∈ (WWalksβ€˜πΊ))
 
Theoremwwlkssswwlksn 29589 The walks of a fixed length as words are walks (in an undirected graph) as words. (Contributed by Alexander van der Vekens, 17-Jul-2018.) (Revised by AV, 12-Apr-2021.)
(𝑁 WWalksN 𝐺) βŠ† (WWalksβ€˜πΊ)
 
Theoremwlkiswwlks1 29590 The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.)
(𝐺 ∈ UPGraph β†’ (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝑃 ∈ (WWalksβ€˜πΊ)))
 
Theoremwlklnwwlkln1 29591 The sequence of vertices in a walk of length 𝑁 is a walk as word of length 𝑁 in a pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
(𝐺 ∈ UPGraph β†’ ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 𝑁) β†’ 𝑃 ∈ (𝑁 WWalksN 𝐺)))
 
Theoremwlkiswwlks2lem1 29592* Lemma 1 for wlkiswwlks2 29598. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))    β‡’   ((𝑃 ∈ Word 𝑉 ∧ 1 ≀ (β™―β€˜π‘ƒ)) β†’ (β™―β€˜πΉ) = ((β™―β€˜π‘ƒ) βˆ’ 1))
 
Theoremwlkiswwlks2lem2 29593* Lemma 2 for wlkiswwlks2 29598. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))    β‡’   (((β™―β€˜π‘ƒ) ∈ β„•0 ∧ 𝐼 ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))) β†’ (πΉβ€˜πΌ) = (β—‘πΈβ€˜{(π‘ƒβ€˜πΌ), (π‘ƒβ€˜(𝐼 + 1))}))
 
Theoremwlkiswwlks2lem3 29594* Lemma 3 for wlkiswwlks2 29598. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))    β‡’   ((𝑃 ∈ Word 𝑉 ∧ 1 ≀ (β™―β€˜π‘ƒ)) β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
 
Theoremwlkiswwlks2lem4 29595* Lemma 4 for wlkiswwlks2 29598. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))    &   πΈ = (iEdgβ€˜πΊ)    β‡’   ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 β†’ βˆ€π‘– ∈ (0..^(β™―β€˜πΉ))(πΈβ€˜(πΉβ€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
 
Theoremwlkiswwlks2lem5 29596* Lemma 5 for wlkiswwlks2 29598. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))    &   πΈ = (iEdgβ€˜πΊ)    β‡’   ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 β†’ 𝐹 ∈ Word dom 𝐸))
 
Theoremwlkiswwlks2lem6 29597* Lemma 6 for wlkiswwlks2 29598. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
𝐹 = (π‘₯ ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ↦ (β—‘πΈβ€˜{(π‘ƒβ€˜π‘₯), (π‘ƒβ€˜(π‘₯ + 1))}))    &   πΈ = (iEdgβ€˜πΊ)    β‡’   ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 β†’ (𝐹 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜πΉ))(πΈβ€˜(πΉβ€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
 
Theoremwlkiswwlks2 29598* A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
(𝐺 ∈ USPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
 
Theoremwlkiswwlks 29599* A walk as word corresponds to a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
(𝐺 ∈ USPGraph β†’ (βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃 ↔ 𝑃 ∈ (WWalksβ€˜πΊ)))
 
Theoremwlkiswwlksupgr2 29600* A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 29598 does not require 𝐺 to be a simple pseudograph, but it requires the Axiom of Choice (ac6 10471) for its proof. Notice that only the existence of a function 𝑓 can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 29598). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
(𝐺 ∈ UPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48040
  Copyright terms: Public domain < Previous  Next >