| Metamath
Proof Explorer Theorem List (p. 296 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | vdegp1bi 29501* | The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑈, 𝑋} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 ∈ 𝑉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} & ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 & ⊢ (Vtx‘𝐹) = 𝑉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑈 & ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) ⇒ ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) | ||
| Theorem | vdegp1ci 29502* | The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 ∈ 𝑉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} & ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 & ⊢ (Vtx‘𝐹) = 𝑉 & ⊢ 𝑋 ∈ 𝑉 & ⊢ 𝑋 ≠ 𝑈 & ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) ⇒ ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) | ||
| Theorem | vtxdginducedm1lem1 29503 | Lemma 1 for vtxdginducedm1 29507: the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ (iEdg‘𝑆) = 𝑃 | ||
| Theorem | vtxdginducedm1lem2 29504* | Lemma 2 for vtxdginducedm1 29507: the domain of the edge function in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ dom (iEdg‘𝑆) = 𝐼 | ||
| Theorem | vtxdginducedm1lem3 29505* | Lemma 3 for vtxdginducedm1 29507: an edge in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁. (Contributed by AV, 16-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ (𝐻 ∈ 𝐼 → ((iEdg‘𝑆)‘𝐻) = (𝐸‘𝐻)) | ||
| Theorem | vtxdginducedm1lem4 29506* | Lemma 4 for vtxdginducedm1 29507. (Contributed by AV, 17-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) | ||
| Theorem | vtxdginducedm1 29507* | The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 17-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) | ||
| Theorem | vtxdginducedm1fi 29508* | The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) | ||
| Theorem | finsumvtxdg2ssteplem1 29509* | Lemma for finsumvtxdg2sstep 29513. (Contributed by AV, 15-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) | ||
| Theorem | finsumvtxdg2ssteplem2 29510* | Lemma for finsumvtxdg2sstep 29513. (Contributed by AV, 12-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) | ||
| Theorem | finsumvtxdg2ssteplem3 29511* | Lemma for finsumvtxdg2sstep 29513. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) | ||
| Theorem | finsumvtxdg2ssteplem4 29512* | Lemma for finsumvtxdg2sstep 29513. (Contributed by AV, 12-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 & ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ⇒ ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽)))) | ||
| Theorem | finsumvtxdg2sstep 29513* | Induction step of finsumvtxdg2size 29514: In a finite pseudograph of finite size, the sum of the degrees of all vertices of the pseudograph is twice the size of the pseudograph if the sum of the degrees of all vertices of the subgraph of the pseudograph not containing one of the vertices is twice the size of the subgraph. (Contributed by AV, 19-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐾 = (𝑉 ∖ {𝑁}) & ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} & ⊢ 𝑃 = (𝐸 ↾ 𝐼) & ⊢ 𝑆 = 〈𝐾, 𝑃〉 ⇒ ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((𝑃 ∈ Fin → Σ𝑣 ∈ 𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = (2 · (♯‘𝐸)))) | ||
| Theorem | finsumvtxdg2size 29514* |
The sum of the degrees of all vertices of a finite pseudograph of finite
size is twice the size of the pseudograph. See equation (1) in section
I.1 in [Bollobas] p. 4. Here, the
"proof" is simply the statement
"Since each edge has two endvertices, the sum of the degrees is
exactly
twice the number of edges". The formal proof of this theorem (for
pseudographs) is much more complicated, taking also the used auxiliary
theorems into account. The proof for a (finite) simple graph (see
fusgr1th 29515) would be shorter, but nevertheless still
laborious.
Although this theorem would hold also for infinite pseudographs and
pseudographs of infinite size, the proof of this most general version
(see theorem "sumvtxdg2size" below) would require many more
auxiliary
theorems (e.g., the extension of the sum Σ
over an arbitrary
set).
I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) | ||
| Theorem | fusgr1th 29515* | The sum of the degrees of all vertices of a finite simple graph is twice the size of the graph. See equation (1) in section I.1 in [Bollobas] p. 4. Also known as the "First Theorem of Graph Theory" (see https://charlesreid1.com/wiki/First_Theorem_of_Graph_Theory). (Contributed by AV, 26-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) | ||
| Theorem | finsumvtxdgeven 29516* | The sum of the degrees of all vertices of a finite pseudograph of finite size is even. See equation (2) in section I.1 in [Bollobas] p. 4, where it is also called the handshaking lemma. (Contributed by AV, 22-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑣 ∈ 𝑉 (𝐷‘𝑣)) | ||
| Theorem | vtxdgoddnumeven 29517* | The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)})) | ||
| Theorem | fusgrvtxdgonume 29518* | The number of vertices of odd degree is even in a finite simple graph. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 27-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FinUSGraph → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)})) | ||
With df-rgr 29521 and df-rusgr 29522, k-regularity of a (simple) graph is defined as predicate RegGraph resp. RegUSGraph. Instead of defining a predicate, an alternative could have been to define a function that maps an extended nonnegative integer to the class of "graphs" in which every vertex has the extended nonnegative integer as degree: RegGraph = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}). This function, however, would not be defined at least for 𝑘 = 0 (see rgrx0nd 29558), because {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} is not a set (see rgrprcx 29556). It is expected that this function is not defined for every 𝑘 ∈ ℕ0* (how could this be proven?). | ||
| Syntax | crgr 29519 | Extend class notation to include the class of all regular graphs. |
| class RegGraph | ||
| Syntax | crusgr 29520 | Extend class notation to include the class of all regular simple graphs. |
| class RegUSGraph | ||
| Definition | df-rgr 29521* | Define the "k-regular" predicate, which is true for a "graph" being k-regular: read 𝐺 RegGraph 𝐾 as "𝐺 is 𝐾-regular" or "𝐺 is a 𝐾-regular graph". Note that 𝐾 is allowed to be positive infinity (𝐾 ∈ ℕ0*), as proposed by GL. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | ||
| Definition | df-rusgr 29522* | Define the "k-regular simple graph" predicate, which is true for a simple graph being k-regular: read 𝐺 RegUSGraph 𝐾 as 𝐺 is a 𝐾-regular simple graph. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | ||
| Theorem | isrgr 29523* | The property of a class being a k-regular graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | ||
| Theorem | rgrprop 29524* | The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | ||
| Theorem | isrusgr 29525 | The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) | ||
| Theorem | rusgrprop 29526 | The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | ||
| Theorem | rusgrrgr 29527 | A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾) | ||
| Theorem | rusgrusgr 29528 | A k-regular simple graph is a simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | ||
| Theorem | finrusgrfusgr 29529 | A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) | ||
| Theorem | isrusgr0 29530* | The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) | ||
| Theorem | rusgrprop0 29531* | The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) | ||
| Theorem | usgreqdrusgr 29532* | If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾) | ||
| Theorem | fusgrregdegfi 29533* | In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 19-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) | ||
| Theorem | fusgrn0eqdrusgr 29534* | If all vertices in a nonempty finite simple graph have the same (finite) degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → 𝐺 RegUSGraph 𝐾)) | ||
| Theorem | frusgrnn0 29535 | In a nonempty finite k-regular simple graph, the degree of each vertex is finite. (Contributed by AV, 7-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) | ||
| Theorem | 0edg0rgr 29536 | A graph is 0-regular if it has no edges. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 RegGraph 0) | ||
| Theorem | uhgr0edg0rgr 29537 | A hypergraph is 0-regular if it has no edges. (Contributed by AV, 19-Dec-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ (Edg‘𝐺) = ∅) → 𝐺 RegGraph 0) | ||
| Theorem | uhgr0edg0rgrb 29538 | A hypergraph is 0-regular iff it has no edges. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 24-Dec-2020.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 RegGraph 0 ↔ (Edg‘𝐺) = ∅)) | ||
| Theorem | usgr0edg0rusgr 29539 | A simple graph is 0-regular iff it has no edges. (Contributed by Alexander van der Vekens, 12-Jul-2018.) (Revised by AV, 19-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
| ⊢ (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅)) | ||
| Theorem | 0vtxrgr 29540* | A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) | ||
| Theorem | 0vtxrusgr 29541* | A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘) | ||
| Theorem | 0uhgrrusgr 29542* | The null graph as hypergraph is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘) | ||
| Theorem | 0grrusgr 29543 | The null graph represented by an empty set is a k-regular simple graph for every k. (Contributed by AV, 26-Dec-2020.) |
| ⊢ ∀𝑘 ∈ ℕ0* ∅ RegUSGraph 𝑘 | ||
| Theorem | 0grrgr 29544 | The null graph represented by an empty set is k-regular for every k. (Contributed by AV, 26-Dec-2020.) |
| ⊢ ∀𝑘 ∈ ℕ0* ∅ RegGraph 𝑘 | ||
| Theorem | cusgrrusgr 29545 | A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) | ||
| Theorem | cusgrm1rusgr 29546 | A finite simple graph with n vertices is complete iff it is (n-1)-regular. Hint: If the definition of RegGraph was allowed for 𝑘 ∈ ℤ, then the assumption 𝑉 ≠ ∅ could be removed. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (𝐺 ∈ ComplUSGraph ↔ 𝐺 RegUSGraph ((♯‘𝑉) − 1))) | ||
| Theorem | rusgrpropnb 29547* | The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) | ||
| Theorem | rusgrpropedg 29548* | The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020.) (Revised by AV, 27-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) | ||
| Theorem | rusgrpropadjvtx 29549* | The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 27-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑘 ∈ 𝑉 ∣ {𝑣, 𝑘} ∈ (Edg‘𝐺)}) = 𝐾)) | ||
| Theorem | rusgrnumwrdl2 29550* | In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) | ||
| Theorem | rusgr1vtxlem 29551* | Lemma for rusgr1vtx 29552. (Contributed by AV, 27-Dec-2020.) |
| ⊢ (((∀𝑣 ∈ 𝑉 (♯‘𝐴) = 𝐾 ∧ ∀𝑣 ∈ 𝑉 𝐴 = ∅) ∧ (𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 1)) → 𝐾 = 0) | ||
| Theorem | rusgr1vtx 29552 | If a k-regular simple graph has only one vertex, then k must be 0. (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 27-Dec-2020.) |
| ⊢ (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0) | ||
| Theorem | rgrusgrprc 29553* | The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | ||
| Theorem | rusgrprc 29554 | The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∣ 𝑔 RegUSGraph 0} ∉ V | ||
| Theorem | rgrprc 29555 | The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∣ 𝑔 RegGraph 0} ∉ V | ||
| Theorem | rgrprcx 29556* | The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | ||
| Theorem | rgrx0ndm 29557* | 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020.) |
| ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) ⇒ ⊢ 0 ∉ dom 𝑅 | ||
| Theorem | rgrx0nd 29558* | The potentially alternatively defined k-regular graphs is not defined for k=0. (Contributed by AV, 28-Dec-2020.) |
| ⊢ 𝑅 = (𝑘 ∈ ℕ0* ↦ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘}) ⇒ ⊢ (𝑅‘0) = ∅ | ||
A "walk" in a graph is usually defined for simple graphs, multigraphs or even pseudographs as "alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see definition of [Bollobas] p. 4, or "A walk (of length k) in a graph is a nonempty alternating sequence v0 e0 v1 e1 ... e(k-1) vk of vertices and edges in G such that ei = { vi , vi+1 } for all i < k.", see definition of [Diestel] p. 10. Formalizing these definitions (mainly by representing the indexed vertices and edges by functions), a walk is represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges (e is a third function enumerating the edges within the graph, not within the walk), and p enumerates the vertices, see df-wlks 29563. Hence a walk (of length n) is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Alternatively, one could define a walk as a function 𝑤:(0...(2 · 𝑛))⟶((Edg‘𝐺) ∪ (Vtx‘𝐺)) such that for all 0 ≤ 𝑘 ≤ 𝑛, (𝑤‘(2 · 𝑘)) ∈ (Vtx‘𝐺) and for all 0 ≤ 𝑘 ≤ (𝑛 − 1), (𝑤‘((2 · 𝑘) + 1)) ∈ (Edg‘𝐺) and {(𝑤‘(2 · 𝑘)), (𝑤‘((2 · 𝑘) + 2))} ⊆ (𝑤‘((2 · 𝑘) + 1)). Based on our definition of Walks, the class of all walks, more restrictive constructs are defined: * Trails (df-trls 29654): A "walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5, i.e., f(i) =/= f(j) if i =/= j. * Paths (df-pths 29677): A path is a walk whose vertices except the first and the last vertex are distinct, i.e., p(i) =/= p(j) if i < j, except possibly when i = 0 and j = n. * SPaths (simple paths, df-spths 29678): A simple path "is a walk with distinct vertices.", see Notation of [Bollobas] p. 5, i.e., p(i) =/= p(j) if i =/= j. * ClWalks (closed walks, df-clwlks 29734): A walk whose endvertices coincide is called a closed walk, i.e., p(0) = p(n). * Circuits (df-crcts 29749): "A trail whose endvertices coincide (a closed trail) is called a circuit." (see Definition of [Bollobas] p. 5), i.e., f(i) =/= f(j) if i =/= j and p(0) = p(n). Equivalently, a circuit is a closed walk with distinct edges. * Cycles (df-cycls 29750): A path whose endvertices coincide (a closed path) is called a cycle, i.e., p(i) =/= p(j) if i =/= j, except i = 0 and j = n, and p(0) = p(n). Equivalently, a cycle is a closed walk with distinct vertices. * EulerPaths (Eulerian paths, df-eupth 30160): An Eulerian path is "a trail containing all edges [of the graph]" (see definition in [Bollobas] p. 16), i.e., f(i) =/= f(j) if i =/= j and for all edges e(x) there is an 1 <= i <= n with e(x) = e(f(i)). Note, however, that an Eulerian path needs not be a path. * Eulerian circuit: An Eulerian circuit (called Euler tour in the definition in [Diestel] p. 22) is "a circuit in a graph containing all the edges" (see definition in [Bollobas] p. 16), i.e., f(i) =/= f(j) if i =/= j, p(0) = p(n) and for all edges e(x) there is an 1 <= i <= n with e(x) = e(f(i)). Hierarchy of all kinds of walks (apply ssriv 3941 and elopabran 5508 to the mentioned theorems to obtain the following subset relationships, as available for clwlkiswlk 29737, see clwlkwlk 29738 and clwlkswks 29739): * Trails are walks (trliswlk 29659): (Trails‘𝐺) ⊆ (Walks‘𝐺) * Paths are trails (pthistrl 29686): (Paths‘𝐺) ⊆ (Trails‘𝐺) * Simple paths are paths (spthispth 29687): (SPaths‘𝐺) ⊆ (Paths‘𝐺) * Closed walks are walks (clwlkiswlk 29737): (ClWalks‘𝐺) ⊆ (Walks‘𝐺) * Circuits are closed walks (crctisclwlk 29757): (Circuits‘𝐺) ⊆ (ClWalks‘𝐺) * Circuits are trails (crctistrl 29758): (Circuits‘𝐺) ⊆ (Trails‘𝐺) * Cycles are paths (cyclispth 29760): (Cycles‘𝐺) ⊆ (Paths‘𝐺) * Cycles are circuits (cycliscrct 29762): (Cycles‘𝐺) ⊆ (Circuits‘𝐺) * (Non-trivial) cycles are not simple paths (cyclnspth 29764): (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) * Eulerian paths are trails (eupthistrl 30173): (EulerPaths‘𝐺) ⊆ (Trails‘𝐺) Often, it is sufficient to refer to a walk by the natural sequence of its vertices, i.e., omitting its edges in its representation: p(0) p(1) ... p(n-1) p(n), see the corresponding remark in [Diestel] p. 6. The concept of a Word, see df-word 14439, is the appropriate way to define such a sequence (being finite and starting at index 0) of vertices. Therefore, it is used in definition df-wwlks 29793 for WWalks, and the representation of a walk as sequence of its vertices is called "walk as word". Only for simple pseudographs, however, the edges can be uniquely reconstructed from such a representation. In this case, the general definitions of walks and the definition of walks as words are equivalent, see wlkiswwlks 29839. In other cases, there could be more than one edge between two adjacent vertices in the walk (in a multigraph), or two adjacent vertices could be connected by two different hyperedges involving additional vertices (in a hypergraph). Based on this definition of WWalks, the class of all walks as word, more restrictive constructs are defined analogously to the general definition of a walk: * WWalksN (walks of length N as word, df-wwlksn 29794): n = N * WSPathsN (simple paths of length N as word, df-wspthsn 29796): p(i) =/= p(j) if i =/= j and n = N * ClWWalks (closed walks as word, df-clwwlk 29944): p(0) = p(n) * ClWWalksN (closed walks of length N as word, df-clwwlkn 29987): p(0) = p(n) and n = N Finally, there are a couple of definitions for (special) walks 〈𝐹, 𝑃〉 having fixed endpoints 𝐴 and 𝐵: * Walks with particular endpoints (df-wlkson 29564): 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 * Trails with particular endpoints (df-trlson 29655): 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 * Paths with particular endpoints (df-pthson 29679): 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 * Simple paths with particular endpoints (df-spthson 29680): 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 * Walks of a fixed length 𝑁 as words with particular endpoints (df-wwlksnon 29795): (𝐴(𝑁 WWalksNOn 𝐺)𝐵) * Simple paths of a fixed length 𝑁 as words with particular endpoints (df-wspthsnon 29797): (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) * Closed Walks of a fixed length 𝑁 as words anchored at a particular vertex 𝐴 (df-wwlksnon 29795): (𝐴(ClWWalksNOn‘𝐺)𝑁) | ||
A "walk" within a graph is usually defined for simple graphs, multigraphs or even pseudographs as "alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. This definition requires the edges to connect two vertices at most (loops are also allowed: if e(i) is a loop, then x(i-1) = x(i)). For hypergraphs containing hyperedges (i.e. edges connecting more than two vertices), however, a more general definition is needed. Two approaches for a definition applicable for arbitrary hypergraphs are used in the literature: "walks on the vertex level" and "walks on the edge level" (see Aksoy, Joslyn, Marrero, Praggastis, Purvine: "Hypernetwork science via high-order hypergraph walks", June 2020, https://doi.org/10.1140/epjds/s13688-020-00231-0): "walks on the edge level": For a positive integer s, an s-walk of length k between hyperedges f and g is a sequence of hyperedges, f=e(0), e(1), ... , e(k)=g, where for j=1, ... , k, e(j-1) =/= e(j) and e(j-1) and e(j) have at least s vertices in common (according to Aksoy et al.). "walks on the vertex level": For a positive integer s, an s-walk of length k between vertices a and b is a sequence of vertices, a=v(0), v(1), ... , v(k)=b, where for j=1, ... , k, v(j-1) and v(j) are connected by at least s edges (analogous to Aksoy et al.). There are two imperfections for the definition for "walks on the edge level": one is that a walk of length 1 consists of two edges (or a walk of length 0 consists of one edge), whereas a walk of length 1 on the vertex level consists of two vertices and one edge (or a walk of length 0 consists of one vertex and no edge). The other is that edges, especially loops, can be traversed only once (and not repeatedly) because of the condition e(j-1) =/= e(j). The latter is avoided in the definition for EdgWalks, see df-ewlks 29562. To be compatible with the (usual) definition of walks for pseudographs, walks also suitable for arbitrary hypergraphs are defined "on the vertex level" in the following as Walks, see df-wlks 29563, restricting s to 1. wlk1ewlk 29603 shows that such a 1-walk "on the vertex level" induces a 1-walk "on the edge level". | ||
| Syntax | cewlks 29559 | Extend class notation with s-walks "on the edge level" (of a hypergraph). |
| class EdgWalks | ||
| Syntax | cwlks 29560 | Extend class notation with walks (i.e. 1-walks) (of a hypergraph). |
| class Walks | ||
| Syntax | cwlkson 29561 | Extend class notation with walks between two vertices (within a graph). |
| class WalksOn | ||
| Definition | df-ewlks 29562* | Define the set of all s-walks of edges (in a hypergraph) corresponding to s-walks "on the edge level" discussed in Aksoy et al. For an extended nonnegative integer s, an s-walk is a sequence of hyperedges, e(0), e(1), ... , e(k), where e(j-1) and e(j) have at least s vertices in common (for j=1, ... , k). In contrast to the definition in Aksoy et al., 𝑠 = 0 (a 0-walk is an arbitrary sequence of hyperedges) and 𝑠 = +∞ (then the number of common vertices of two adjacent hyperedges must be infinite) are allowed. Furthermore, it is not forbidden that adjacent hyperedges are equal. (Contributed by AV, 4-Jan-2021.) |
| ⊢ EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓 ∣ [(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) | ||
| Definition | df-wlks 29563* |
Define the set of all walks (in a hypergraph). Such walks correspond to
the s-walks "on the vertex level" (with s = 1), and also to
1-walks "on
the edge level" (see wlk1walk 29602) discussed in Aksoy et al. The
predicate 𝐹(Walks‘𝐺)𝑃 can be read as "The pair
〈𝐹, 𝑃〉 represents a walk in a graph
𝐺", see also iswlk 29574.
The condition {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. (𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) should be allowed only if there is a loop at (𝑝‘𝑘). Otherwise, C would be fulfilled by each edge containing (𝑝‘𝑘). According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.) |
| ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | ||
| Definition | df-wlkson 29564* | Define the collection of walks with particular endpoints (in a hypergraph). The predicate 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 can be read as "The pair 〈𝐹, 𝑃〉 represents a walk from vertex 𝐴 to vertex 𝐵 in a graph 𝐺", see also iswlkon 29619. This corresponds to the "x0-x(l)-walks", see Definition in [Bollobas] p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) | ||
| Theorem | ewlksfval 29565* | The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) | ||
| Theorem | isewlk 29566* | Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) | ||
| Theorem | ewlkprop 29567* | Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | ewlkinedg 29568 | The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝐾 ∈ (1..^(♯‘𝐹))) → 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝐾 − 1))) ∩ (𝐼‘(𝐹‘𝐾))))) | ||
| Theorem | ewlkle 29569 | An s-walk of edges is also a t-walk of edges if 𝑡 ≤ 𝑠. (Contributed by AV, 4-Jan-2021.) |
| ⊢ ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0* ∧ 𝑇 ≤ 𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)) | ||
| Theorem | upgrewlkle2 29570 | In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 1 < (♯‘𝐹)) → 𝑆 ≤ 2) | ||
| Theorem | wkslem1 29571 | Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
| ⊢ (𝐴 = 𝐵 → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘(𝐵 + 1)), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘(𝐵 + 1))} ⊆ (𝐼‘(𝐹‘𝐵))))) | ||
| Theorem | wkslem2 29572 | Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.) |
| ⊢ ((𝐴 = 𝐵 ∧ (𝐴 + 1) = 𝐶) → (if-((𝑃‘𝐴) = (𝑃‘(𝐴 + 1)), (𝐼‘(𝐹‘𝐴)) = {(𝑃‘𝐴)}, {(𝑃‘𝐴), (𝑃‘(𝐴 + 1))} ⊆ (𝐼‘(𝐹‘𝐴))) ↔ if-((𝑃‘𝐵) = (𝑃‘𝐶), (𝐼‘(𝐹‘𝐵)) = {(𝑃‘𝐵)}, {(𝑃‘𝐵), (𝑃‘𝐶)} ⊆ (𝐼‘(𝐹‘𝐵))))) | ||
| Theorem | wksfval 29573* | The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) | ||
| Theorem | iswlk 29574* | Properties of a pair of functions to be/represent a walk. (Contributed by AV, 30-Dec-2020.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkprop 29575* | Properties of a walk. (Contributed by AV, 5-Nov-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlkv 29576 | The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 3-Feb-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||
| Theorem | iswlkg 29577* | Generalization of iswlk 29574: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkf 29578 | The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | wlkcl 29579 | A walk has length ♯(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 30172. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | ||
| Theorem | wlkp 29580 | The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
| Theorem | wlkpwrd 29581 | The sequence of vertices of a walk is a word over the set of vertices. (Contributed by AV, 27-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word 𝑉) | ||
| Theorem | wlklenvp1 29582 | The number of vertices of a walk (in an undirected graph) is the number of its edges plus 1. (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 1-May-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | ||
| Theorem | wksv 29583* | The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
| ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | ||
| Theorem | wlkn0 29584 | The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ≠ ∅) | ||
| Theorem | wlklenvm1 29585 | The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | ||
| Theorem | ifpsnprss 29586 | Lemma for wlkvtxeledg 29587: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) |
| ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) | ||
| Theorem | wlkvtxeledg 29587* | Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | ||
| Theorem | wlkvtxiedg 29588* | The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) | ||
| Theorem | relwlk 29589 | The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
| ⊢ Rel (Walks‘𝐺) | ||
| Theorem | wlkvv 29590 | If there is at least one walk in the graph, all walks are in the universal class of ordered pairs. (Contributed by AV, 2-Jan-2021.) |
| ⊢ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) → 𝑊 ∈ (V × V)) | ||
| Theorem | wlkop 29591 | A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
| Theorem | wlkcpr 29592 | A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) | ||
| Theorem | wlk2f 29593* | If there is a walk 𝑊 there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
| ⊢ (𝑊 ∈ (Walks‘𝐺) → ∃𝑓∃𝑝 𝑓(Walks‘𝐺)𝑝) | ||
| Theorem | wlkcomp 29594* | A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | wlkcompim 29595* | Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) | ||
| Theorem | wlkelwrd 29596 | The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) | ||
| Theorem | wlkeq 29597* | Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.) |
| ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st ‘𝐴)‘𝑥) = ((1st ‘𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑥) = ((2nd ‘𝐵)‘𝑥)))) | ||
| Theorem | edginwlk 29598 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 9-Dec-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝐾)) ∈ 𝐸) | ||
| Theorem | upgredginwlk 29599 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝐾 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝐾)) ∈ 𝐸)) | ||
| Theorem | iedginwlk 29600 | The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((Fun 𝐼 ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑋)) ∈ ran 𝐼) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |