| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-clwwlkn | Structured version Visualization version GIF version | ||
| Description: Define the set of all closed walks of a fixed length 𝑛 as words over the set of vertices in a graph 𝑔. If 0 < 𝑛, such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 29791. For 𝑛 = 0, the set is empty, see clwwlkn0 30047. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) |
| Ref | Expression |
|---|---|
| df-clwwlkn | ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cclwwlkn 30043 | . 2 class ClWWalksN | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | vg | . . 3 setvar 𝑔 | |
| 4 | cn0 12526 | . . 3 class ℕ0 | |
| 5 | cvv 3480 | . . 3 class V | |
| 6 | vw | . . . . . . 7 setvar 𝑤 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑤 |
| 8 | chash 14369 | . . . . . 6 class ♯ | |
| 9 | 7, 8 | cfv 6561 | . . . . 5 class (♯‘𝑤) |
| 10 | 2 | cv 1539 | . . . . 5 class 𝑛 |
| 11 | 9, 10 | wceq 1540 | . . . 4 wff (♯‘𝑤) = 𝑛 |
| 12 | 3 | cv 1539 | . . . . 5 class 𝑔 |
| 13 | cclwwlk 30000 | . . . . 5 class ClWWalks | |
| 14 | 12, 13 | cfv 6561 | . . . 4 class (ClWWalks‘𝑔) |
| 15 | 11, 6, 14 | crab 3436 | . . 3 class {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} |
| 16 | 2, 3, 4, 5, 15 | cmpo 7433 | . 2 class (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
| 17 | 1, 16 | wceq 1540 | 1 wff ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: clwwlkn 30045 clwwlkneq0 30048 |
| Copyright terms: Public domain | W3C validator |