Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-clwwlkn | Structured version Visualization version GIF version |
Description: Define the set of all closed walks of a fixed length 𝑛 as words over the set of vertices in a graph 𝑔. If 0 < 𝑛, such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 28148. For 𝑛 = 0, the set is empty, see clwwlkn0 28401. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) |
Ref | Expression |
---|---|
df-clwwlkn | ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cclwwlkn 28397 | . 2 class ClWWalksN | |
2 | vn | . . 3 setvar 𝑛 | |
3 | vg | . . 3 setvar 𝑔 | |
4 | cn0 12242 | . . 3 class ℕ0 | |
5 | cvv 3433 | . . 3 class V | |
6 | vw | . . . . . . 7 setvar 𝑤 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑤 |
8 | chash 14053 | . . . . . 6 class ♯ | |
9 | 7, 8 | cfv 6437 | . . . . 5 class (♯‘𝑤) |
10 | 2 | cv 1538 | . . . . 5 class 𝑛 |
11 | 9, 10 | wceq 1539 | . . . 4 wff (♯‘𝑤) = 𝑛 |
12 | 3 | cv 1538 | . . . . 5 class 𝑔 |
13 | cclwwlk 28354 | . . . . 5 class ClWWalks | |
14 | 12, 13 | cfv 6437 | . . . 4 class (ClWWalks‘𝑔) |
15 | 11, 6, 14 | crab 3069 | . . 3 class {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} |
16 | 2, 3, 4, 5, 15 | cmpo 7286 | . 2 class (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
17 | 1, 16 | wceq 1539 | 1 wff ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
Colors of variables: wff setvar class |
This definition is referenced by: clwwlkn 28399 clwwlkneq0 28402 |
Copyright terms: Public domain | W3C validator |