![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlkneq0 | Structured version Visualization version GIF version |
Description: Sufficient conditions for ClWWalksN to be empty. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 24-Feb-2022.) |
Ref | Expression |
---|---|
clwwlkneq0 | ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) → (𝑁 ClWWalksN 𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3045 | . . . 4 ⊢ (𝐺 ∉ V ↔ ¬ 𝐺 ∈ V) | |
2 | ianor 983 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0)) | |
3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝐺 ∉ V ∨ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) ↔ (¬ 𝐺 ∈ V ∨ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0))) |
4 | df-nel 3045 | . . . . 5 ⊢ (𝑁 ∉ ℕ ↔ ¬ 𝑁 ∈ ℕ) | |
5 | elnnne0 12538 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
6 | 4, 5 | xchbinx 334 | . . . 4 ⊢ (𝑁 ∉ ℕ ↔ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
7 | 6 | orbi2i 912 | . . 3 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) ↔ (𝐺 ∉ V ∨ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0))) |
8 | orass 921 | . . 3 ⊢ (((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0) ↔ (¬ 𝐺 ∈ V ∨ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0))) | |
9 | 3, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) ↔ ((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0)) |
10 | ianor 983 | . . . . 5 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
11 | orcom 870 | . . . . 5 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) ↔ (¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0)) | |
12 | 10, 11 | bitri 275 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0)) |
13 | df-clwwlkn 30054 | . . . . 5 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
14 | 13 | mpondm0 7673 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
15 | 12, 14 | sylbir 235 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = ∅) |
16 | nne 2942 | . . . 4 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
17 | oveq1 7438 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺)) | |
18 | clwwlkn0 30057 | . . . . 5 ⊢ (0 ClWWalksN 𝐺) = ∅ | |
19 | 17, 18 | eqtrdi 2791 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 ClWWalksN 𝐺) = ∅) |
20 | 16, 19 | sylbi 217 | . . 3 ⊢ (¬ 𝑁 ≠ 0 → (𝑁 ClWWalksN 𝐺) = ∅) |
21 | 15, 20 | jaoi 857 | . 2 ⊢ (((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0) → (𝑁 ClWWalksN 𝐺) = ∅) |
22 | 9, 21 | sylbi 217 | 1 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) → (𝑁 ClWWalksN 𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∉ wnel 3044 {crab 3433 Vcvv 3478 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 ♯chash 14366 ClWWalkscclwwlk 30010 ClWWalksN cclwwlkn 30053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-clwwlk 30011 df-clwwlkn 30054 |
This theorem is referenced by: clwwlknnn 30062 |
Copyright terms: Public domain | W3C validator |