| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlkneq0 | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for ClWWalksN to be empty. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 24-Feb-2022.) |
| Ref | Expression |
|---|---|
| clwwlkneq0 | ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) → (𝑁 ClWWalksN 𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3037 | . . . 4 ⊢ (𝐺 ∉ V ↔ ¬ 𝐺 ∈ V) | |
| 2 | ianor 983 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0)) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝐺 ∉ V ∨ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) ↔ (¬ 𝐺 ∈ V ∨ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0))) |
| 4 | df-nel 3037 | . . . . 5 ⊢ (𝑁 ∉ ℕ ↔ ¬ 𝑁 ∈ ℕ) | |
| 5 | elnnne0 12515 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 6 | 4, 5 | xchbinx 334 | . . . 4 ⊢ (𝑁 ∉ ℕ ↔ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| 7 | 6 | orbi2i 912 | . . 3 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) ↔ (𝐺 ∉ V ∨ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0))) |
| 8 | orass 921 | . . 3 ⊢ (((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0) ↔ (¬ 𝐺 ∈ V ∨ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0))) | |
| 9 | 3, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) ↔ ((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0)) |
| 10 | ianor 983 | . . . . 5 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
| 11 | orcom 870 | . . . . 5 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) ↔ (¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0)) | |
| 12 | 10, 11 | bitri 275 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0)) |
| 13 | df-clwwlkn 30006 | . . . . 5 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
| 14 | 13 | mpondm0 7647 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 15 | 12, 14 | sylbir 235 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 16 | nne 2936 | . . . 4 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
| 17 | oveq1 7412 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺)) | |
| 18 | clwwlkn0 30009 | . . . . 5 ⊢ (0 ClWWalksN 𝐺) = ∅ | |
| 19 | 17, 18 | eqtrdi 2786 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 ClWWalksN 𝐺) = ∅) |
| 20 | 16, 19 | sylbi 217 | . . 3 ⊢ (¬ 𝑁 ≠ 0 → (𝑁 ClWWalksN 𝐺) = ∅) |
| 21 | 15, 20 | jaoi 857 | . 2 ⊢ (((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 22 | 9, 21 | sylbi 217 | 1 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) → (𝑁 ClWWalksN 𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∉ wnel 3036 {crab 3415 Vcvv 3459 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕcn 12240 ℕ0cn0 12501 ♯chash 14348 ClWWalkscclwwlk 29962 ClWWalksN cclwwlkn 30005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-clwwlk 29963 df-clwwlkn 30006 |
| This theorem is referenced by: clwwlknnn 30014 |
| Copyright terms: Public domain | W3C validator |