| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlkneq0 | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for ClWWalksN to be empty. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 24-Feb-2022.) |
| Ref | Expression |
|---|---|
| clwwlkneq0 | ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) → (𝑁 ClWWalksN 𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3033 | . . . 4 ⊢ (𝐺 ∉ V ↔ ¬ 𝐺 ∈ V) | |
| 2 | ianor 983 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0)) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝐺 ∉ V ∨ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) ↔ (¬ 𝐺 ∈ V ∨ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0))) |
| 4 | df-nel 3033 | . . . . 5 ⊢ (𝑁 ∉ ℕ ↔ ¬ 𝑁 ∈ ℕ) | |
| 5 | elnnne0 12390 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 6 | 4, 5 | xchbinx 334 | . . . 4 ⊢ (𝑁 ∉ ℕ ↔ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
| 7 | 6 | orbi2i 912 | . . 3 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) ↔ (𝐺 ∉ V ∨ ¬ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0))) |
| 8 | orass 921 | . . 3 ⊢ (((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0) ↔ (¬ 𝐺 ∈ V ∨ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0))) | |
| 9 | 3, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) ↔ ((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0)) |
| 10 | ianor 983 | . . . . 5 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
| 11 | orcom 870 | . . . . 5 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) ↔ (¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0)) | |
| 12 | 10, 11 | bitri 275 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0)) |
| 13 | df-clwwlkn 29997 | . . . . 5 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
| 14 | 13 | mpondm0 7581 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 15 | 12, 14 | sylbir 235 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 16 | nne 2932 | . . . 4 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
| 17 | oveq1 7348 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 ClWWalksN 𝐺) = (0 ClWWalksN 𝐺)) | |
| 18 | clwwlkn0 30000 | . . . . 5 ⊢ (0 ClWWalksN 𝐺) = ∅ | |
| 19 | 17, 18 | eqtrdi 2782 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 ClWWalksN 𝐺) = ∅) |
| 20 | 16, 19 | sylbi 217 | . . 3 ⊢ (¬ 𝑁 ≠ 0 → (𝑁 ClWWalksN 𝐺) = ∅) |
| 21 | 15, 20 | jaoi 857 | . 2 ⊢ (((¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0) ∨ ¬ 𝑁 ≠ 0) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 22 | 9, 21 | sylbi 217 | 1 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ) → (𝑁 ClWWalksN 𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 {crab 3395 Vcvv 3436 ∅c0 4278 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 ♯chash 14232 ClWWalkscclwwlk 29953 ClWWalksN cclwwlkn 29996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-clwwlk 29954 df-clwwlkn 29997 |
| This theorem is referenced by: clwwlknnn 30005 |
| Copyright terms: Public domain | W3C validator |