Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlkn | Structured version Visualization version GIF version |
Description: The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) |
Ref | Expression |
---|---|
clwwlkn | ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑔 = 𝐺 → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) |
3 | eqeq2 2750 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) |
5 | 2, 4 | rabeqbidv 3410 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
6 | df-clwwlkn 28290 | . . 3 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
7 | fvex 6769 | . . . 4 ⊢ (ClWWalks‘𝐺) ∈ V | |
8 | 7 | rabex 5251 | . . 3 ⊢ {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V |
9 | 5, 6, 8 | ovmpoa 7406 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
10 | 6 | mpondm0 7488 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
11 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | 11 | clwwlkbp 28250 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
13 | 12 | simp2d 1141 | . . . . . . . . 9 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → 𝑤 ∈ Word (Vtx‘𝐺)) |
14 | lencl 14164 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (♯‘𝑤) ∈ ℕ0) |
16 | eleq1 2826 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
17 | 15, 16 | syl5ibcom 244 | . . . . . . 7 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
18 | 17 | con3rr3 155 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ (ClWWalks‘𝐺) → ¬ (♯‘𝑤) = 𝑁)) |
19 | 18 | ralrimiv 3106 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
20 | ral0 4440 | . . . . . 6 ⊢ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁 | |
21 | fvprc 6748 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅) | |
22 | 21 | raleqdv 3339 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁 ↔ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁)) |
23 | 20, 22 | mpbiri 257 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
24 | 19, 23 | jaoi 853 | . . . 4 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
25 | ianor 978 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
26 | rabeq0 4315 | . . . 4 ⊢ ({𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) | |
27 | 24, 25, 26 | 3imtr4i 291 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅) |
28 | 10, 27 | eqtr4d 2781 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
29 | 9, 28 | pm2.61i 182 | 1 ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 ℕ0cn0 12163 ♯chash 13972 Word cword 14145 Vtxcvtx 27269 ClWWalkscclwwlk 28246 ClWWalksN cclwwlkn 28289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-clwwlk 28247 df-clwwlkn 28290 |
This theorem is referenced by: isclwwlkn 28292 clwwlkn0 28293 clwwlknfi 28310 clwlknf1oclwwlkn 28349 |
Copyright terms: Public domain | W3C validator |