MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn Structured version   Visualization version   GIF version

Theorem clwwlkn 29856
Description: The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlkn (𝑁 ClWWalksN 𝐺) = {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁}
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁

Proof of Theorem clwwlkn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6902 . . . . 5 (𝑔 = 𝐺 β†’ (ClWWalksβ€˜π‘”) = (ClWWalksβ€˜πΊ))
21adantl 480 . . . 4 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) β†’ (ClWWalksβ€˜π‘”) = (ClWWalksβ€˜πΊ))
3 eqeq2 2740 . . . . 5 (𝑛 = 𝑁 β†’ ((β™―β€˜π‘€) = 𝑛 ↔ (β™―β€˜π‘€) = 𝑁))
43adantr 479 . . . 4 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) β†’ ((β™―β€˜π‘€) = 𝑛 ↔ (β™―β€˜π‘€) = 𝑁))
52, 4rabeqbidv 3448 . . 3 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) β†’ {𝑀 ∈ (ClWWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = 𝑛} = {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁})
6 df-clwwlkn 29855 . . 3 ClWWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (ClWWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = 𝑛})
7 fvex 6915 . . . 4 (ClWWalksβ€˜πΊ) ∈ V
87rabex 5338 . . 3 {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁} ∈ V
95, 6, 8ovmpoa 7582 . 2 ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 ClWWalksN 𝐺) = {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁})
106mpondm0 7667 . . 3 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 ClWWalksN 𝐺) = βˆ…)
11 eqid 2728 . . . . . . . . . . 11 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
1211clwwlkbp 29815 . . . . . . . . . 10 (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑀 β‰  βˆ…))
1312simp2d 1140 . . . . . . . . 9 (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ 𝑀 ∈ Word (Vtxβ€˜πΊ))
14 lencl 14523 . . . . . . . . 9 (𝑀 ∈ Word (Vtxβ€˜πΊ) β†’ (β™―β€˜π‘€) ∈ β„•0)
1513, 14syl 17 . . . . . . . 8 (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ (β™―β€˜π‘€) ∈ β„•0)
16 eleq1 2817 . . . . . . . 8 ((β™―β€˜π‘€) = 𝑁 β†’ ((β™―β€˜π‘€) ∈ β„•0 ↔ 𝑁 ∈ β„•0))
1715, 16syl5ibcom 244 . . . . . . 7 (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ ((β™―β€˜π‘€) = 𝑁 β†’ 𝑁 ∈ β„•0))
1817con3rr3 155 . . . . . 6 (Β¬ 𝑁 ∈ β„•0 β†’ (𝑀 ∈ (ClWWalksβ€˜πΊ) β†’ Β¬ (β™―β€˜π‘€) = 𝑁))
1918ralrimiv 3142 . . . . 5 (Β¬ 𝑁 ∈ β„•0 β†’ βˆ€π‘€ ∈ (ClWWalksβ€˜πΊ) Β¬ (β™―β€˜π‘€) = 𝑁)
20 ral0 4516 . . . . . 6 βˆ€π‘€ ∈ βˆ… Β¬ (β™―β€˜π‘€) = 𝑁
21 fvprc 6894 . . . . . . 7 (Β¬ 𝐺 ∈ V β†’ (ClWWalksβ€˜πΊ) = βˆ…)
2221raleqdv 3323 . . . . . 6 (Β¬ 𝐺 ∈ V β†’ (βˆ€π‘€ ∈ (ClWWalksβ€˜πΊ) Β¬ (β™―β€˜π‘€) = 𝑁 ↔ βˆ€π‘€ ∈ βˆ… Β¬ (β™―β€˜π‘€) = 𝑁))
2320, 22mpbiri 257 . . . . 5 (Β¬ 𝐺 ∈ V β†’ βˆ€π‘€ ∈ (ClWWalksβ€˜πΊ) Β¬ (β™―β€˜π‘€) = 𝑁)
2419, 23jaoi 855 . . . 4 ((Β¬ 𝑁 ∈ β„•0 ∨ Β¬ 𝐺 ∈ V) β†’ βˆ€π‘€ ∈ (ClWWalksβ€˜πΊ) Β¬ (β™―β€˜π‘€) = 𝑁)
25 ianor 979 . . . 4 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ↔ (Β¬ 𝑁 ∈ β„•0 ∨ Β¬ 𝐺 ∈ V))
26 rabeq0 4388 . . . 4 ({𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁} = βˆ… ↔ βˆ€π‘€ ∈ (ClWWalksβ€˜πΊ) Β¬ (β™―β€˜π‘€) = 𝑁)
2724, 25, 263imtr4i 291 . . 3 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁} = βˆ…)
2810, 27eqtr4d 2771 . 2 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 ClWWalksN 𝐺) = {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁})
299, 28pm2.61i 182 1 (𝑁 ClWWalksN 𝐺) = {𝑀 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘€) = 𝑁}
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 394   ∨ wo 845   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  βˆ€wral 3058  {crab 3430  Vcvv 3473  βˆ…c0 4326  β€˜cfv 6553  (class class class)co 7426  β„•0cn0 12510  β™―chash 14329  Word cword 14504  Vtxcvtx 28829  ClWWalkscclwwlk 29811   ClWWalksN cclwwlkn 29854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-clwwlk 29812  df-clwwlkn 29855
This theorem is referenced by:  isclwwlkn  29857  clwwlkn0  29858  clwwlknfi  29875  clwlknf1oclwwlkn  29914
  Copyright terms: Public domain W3C validator