Step | Hyp | Ref
| Expression |
1 | | fveq2 6888 |
. . . . 5
β’ (π = πΊ β (ClWWalksβπ) = (ClWWalksβπΊ)) |
2 | 1 | adantl 482 |
. . . 4
β’ ((π = π β§ π = πΊ) β (ClWWalksβπ) = (ClWWalksβπΊ)) |
3 | | eqeq2 2744 |
. . . . 5
β’ (π = π β ((β―βπ€) = π β (β―βπ€) = π)) |
4 | 3 | adantr 481 |
. . . 4
β’ ((π = π β§ π = πΊ) β ((β―βπ€) = π β (β―βπ€) = π)) |
5 | 2, 4 | rabeqbidv 3449 |
. . 3
β’ ((π = π β§ π = πΊ) β {π€ β (ClWWalksβπ) β£ (β―βπ€) = π} = {π€ β (ClWWalksβπΊ) β£ (β―βπ€) = π}) |
6 | | df-clwwlkn 29267 |
. . 3
β’
ClWWalksN = (π β
β0, π
β V β¦ {π€ β
(ClWWalksβπ) β£
(β―βπ€) = π}) |
7 | | fvex 6901 |
. . . 4
β’
(ClWWalksβπΊ)
β V |
8 | 7 | rabex 5331 |
. . 3
β’ {π€ β (ClWWalksβπΊ) β£ (β―βπ€) = π} β V |
9 | 5, 6, 8 | ovmpoa 7559 |
. 2
β’ ((π β β0
β§ πΊ β V) β
(π ClWWalksN πΊ) = {π€ β (ClWWalksβπΊ) β£ (β―βπ€) = π}) |
10 | 6 | mpondm0 7643 |
. . 3
β’ (Β¬
(π β
β0 β§ πΊ
β V) β (π
ClWWalksN πΊ) =
β
) |
11 | | eqid 2732 |
. . . . . . . . . . 11
β’
(VtxβπΊ) =
(VtxβπΊ) |
12 | 11 | clwwlkbp 29227 |
. . . . . . . . . 10
β’ (π€ β (ClWWalksβπΊ) β (πΊ β V β§ π€ β Word (VtxβπΊ) β§ π€ β β
)) |
13 | 12 | simp2d 1143 |
. . . . . . . . 9
β’ (π€ β (ClWWalksβπΊ) β π€ β Word (VtxβπΊ)) |
14 | | lencl 14479 |
. . . . . . . . 9
β’ (π€ β Word (VtxβπΊ) β (β―βπ€) β
β0) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
β’ (π€ β (ClWWalksβπΊ) β (β―βπ€) β
β0) |
16 | | eleq1 2821 |
. . . . . . . 8
β’
((β―βπ€) =
π β
((β―βπ€) β
β0 β π β
β0)) |
17 | 15, 16 | syl5ibcom 244 |
. . . . . . 7
β’ (π€ β (ClWWalksβπΊ) β ((β―βπ€) = π β π β
β0)) |
18 | 17 | con3rr3 155 |
. . . . . 6
β’ (Β¬
π β
β0 β (π€ β (ClWWalksβπΊ) β Β¬ (β―βπ€) = π)) |
19 | 18 | ralrimiv 3145 |
. . . . 5
β’ (Β¬
π β
β0 β βπ€ β (ClWWalksβπΊ) Β¬ (β―βπ€) = π) |
20 | | ral0 4511 |
. . . . . 6
β’
βπ€ β
β
Β¬ (β―βπ€) = π |
21 | | fvprc 6880 |
. . . . . . 7
β’ (Β¬
πΊ β V β
(ClWWalksβπΊ) =
β
) |
22 | 21 | raleqdv 3325 |
. . . . . 6
β’ (Β¬
πΊ β V β
(βπ€ β
(ClWWalksβπΊ) Β¬
(β―βπ€) = π β βπ€ β β
Β¬
(β―βπ€) = π)) |
23 | 20, 22 | mpbiri 257 |
. . . . 5
β’ (Β¬
πΊ β V β
βπ€ β
(ClWWalksβπΊ) Β¬
(β―βπ€) = π) |
24 | 19, 23 | jaoi 855 |
. . . 4
β’ ((Β¬
π β
β0 β¨ Β¬ πΊ β V) β βπ€ β (ClWWalksβπΊ) Β¬ (β―βπ€) = π) |
25 | | ianor 980 |
. . . 4
β’ (Β¬
(π β
β0 β§ πΊ
β V) β (Β¬ π
β β0 β¨ Β¬ πΊ β V)) |
26 | | rabeq0 4383 |
. . . 4
β’ ({π€ β (ClWWalksβπΊ) β£ (β―βπ€) = π} = β
β βπ€ β (ClWWalksβπΊ) Β¬ (β―βπ€) = π) |
27 | 24, 25, 26 | 3imtr4i 291 |
. . 3
β’ (Β¬
(π β
β0 β§ πΊ
β V) β {π€ β
(ClWWalksβπΊ) β£
(β―βπ€) = π} = β
) |
28 | 10, 27 | eqtr4d 2775 |
. 2
β’ (Β¬
(π β
β0 β§ πΊ
β V) β (π
ClWWalksN πΊ) = {π€ β (ClWWalksβπΊ) β£ (β―βπ€) = π}) |
29 | 9, 28 | pm2.61i 182 |
1
β’ (π ClWWalksN πΊ) = {π€ β (ClWWalksβπΊ) β£ (β―βπ€) = π} |