Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn Structured version   Visualization version   GIF version

Theorem clwwlkn 27809
 Description: The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlkn (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁

Proof of Theorem clwwlkn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6652 . . . . 5 (𝑔 = 𝐺 → (ClWWalks‘𝑔) = (ClWWalks‘𝐺))
21adantl 485 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (ClWWalks‘𝑔) = (ClWWalks‘𝐺))
3 eqeq2 2834 . . . . 5 (𝑛 = 𝑁 → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁))
43adantr 484 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁))
52, 4rabeqbidv 3461 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁})
6 df-clwwlkn 27808 . . 3 ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛})
7 fvex 6665 . . . 4 (ClWWalks‘𝐺) ∈ V
87rabex 5211 . . 3 {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V
95, 6, 8ovmpoa 7289 . 2 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁})
106mpondm0 7371 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅)
11 eqid 2822 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
1211clwwlkbp 27768 . . . . . . . . . 10 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
1312simp2d 1140 . . . . . . . . 9 (𝑤 ∈ (ClWWalks‘𝐺) → 𝑤 ∈ Word (Vtx‘𝐺))
14 lencl 13876 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0)
1513, 14syl 17 . . . . . . . 8 (𝑤 ∈ (ClWWalks‘𝐺) → (♯‘𝑤) ∈ ℕ0)
16 eleq1 2901 . . . . . . . 8 ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0𝑁 ∈ ℕ0))
1715, 16syl5ibcom 248 . . . . . . 7 (𝑤 ∈ (ClWWalks‘𝐺) → ((♯‘𝑤) = 𝑁𝑁 ∈ ℕ0))
1817con3rr3 158 . . . . . 6 𝑁 ∈ ℕ0 → (𝑤 ∈ (ClWWalks‘𝐺) → ¬ (♯‘𝑤) = 𝑁))
1918ralrimiv 3173 . . . . 5 𝑁 ∈ ℕ0 → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁)
20 ral0 4428 . . . . . 6 𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁
21 fvprc 6645 . . . . . . 7 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅)
2221raleqdv 3392 . . . . . 6 𝐺 ∈ V → (∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁 ↔ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁))
2320, 22mpbiri 261 . . . . 5 𝐺 ∈ V → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁)
2419, 23jaoi 854 . . . 4 ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁)
25 ianor 979 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V))
26 rabeq0 4310 . . . 4 ({𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁)
2724, 25, 263imtr4i 295 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅)
2810, 27eqtr4d 2860 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁})
299, 28pm2.61i 185 1 (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  {crab 3134  Vcvv 3469  ∅c0 4265  ‘cfv 6334  (class class class)co 7140  ℕ0cn0 11885  ♯chash 13686  Word cword 13857  Vtxcvtx 26787  ClWWalkscclwwlk 27764   ClWWalksN cclwwlkn 27807 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-clwwlk 27765  df-clwwlkn 27808 This theorem is referenced by:  isclwwlkn  27810  clwwlkn0  27811  clwwlknfi  27828  clwlknf1oclwwlkn  27867
 Copyright terms: Public domain W3C validator