| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlkn | Structured version Visualization version GIF version | ||
| Description: The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlkn | ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . . 5 ⊢ (𝑔 = 𝐺 → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) |
| 3 | eqeq2 2741 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) |
| 5 | 2, 4 | rabeqbidv 3415 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
| 6 | df-clwwlkn 29987 | . . 3 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
| 7 | fvex 6839 | . . . 4 ⊢ (ClWWalks‘𝐺) ∈ V | |
| 8 | 7 | rabex 5281 | . . 3 ⊢ {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V |
| 9 | 5, 6, 8 | ovmpoa 7508 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
| 10 | 6 | mpondm0 7593 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 11 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | 11 | clwwlkbp 29947 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
| 13 | 12 | simp2d 1143 | . . . . . . . . 9 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → 𝑤 ∈ Word (Vtx‘𝐺)) |
| 14 | lencl 14458 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (♯‘𝑤) ∈ ℕ0) |
| 16 | eleq1 2816 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 17 | 15, 16 | syl5ibcom 245 | . . . . . . 7 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
| 18 | 17 | con3rr3 155 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ (ClWWalks‘𝐺) → ¬ (♯‘𝑤) = 𝑁)) |
| 19 | 18 | ralrimiv 3120 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
| 20 | ral0 4466 | . . . . . 6 ⊢ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁 | |
| 21 | fvprc 6818 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅) | |
| 22 | 21 | raleqdv 3290 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁 ↔ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁)) |
| 23 | 20, 22 | mpbiri 258 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
| 24 | 19, 23 | jaoi 857 | . . . 4 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
| 25 | ianor 983 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
| 26 | rabeq0 4341 | . . . 4 ⊢ ({𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) | |
| 27 | 24, 25, 26 | 3imtr4i 292 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅) |
| 28 | 10, 27 | eqtr4d 2767 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
| 29 | 9, 28 | pm2.61i 182 | 1 ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3396 Vcvv 3438 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 ℕ0cn0 12402 ♯chash 14255 Word cword 14438 Vtxcvtx 28959 ClWWalkscclwwlk 29943 ClWWalksN cclwwlkn 29986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-clwwlk 29944 df-clwwlkn 29987 |
| This theorem is referenced by: isclwwlkn 29989 clwwlkn0 29990 clwwlknfi 30007 clwlknf1oclwwlkn 30046 |
| Copyright terms: Public domain | W3C validator |