| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlkn | Structured version Visualization version GIF version | ||
| Description: The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlkn | ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . . 5 ⊢ (𝑔 = 𝐺 → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) |
| 3 | eqeq2 2745 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) |
| 5 | 2, 4 | rabeqbidv 3414 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
| 6 | df-clwwlkn 30007 | . . 3 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
| 7 | fvex 6841 | . . . 4 ⊢ (ClWWalks‘𝐺) ∈ V | |
| 8 | 7 | rabex 5279 | . . 3 ⊢ {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V |
| 9 | 5, 6, 8 | ovmpoa 7507 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
| 10 | 6 | mpondm0 7592 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
| 11 | eqid 2733 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 12 | 11 | clwwlkbp 29967 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
| 13 | 12 | simp2d 1143 | . . . . . . . . 9 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → 𝑤 ∈ Word (Vtx‘𝐺)) |
| 14 | lencl 14442 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (♯‘𝑤) ∈ ℕ0) |
| 16 | eleq1 2821 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 17 | 15, 16 | syl5ibcom 245 | . . . . . . 7 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
| 18 | 17 | con3rr3 155 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ (ClWWalks‘𝐺) → ¬ (♯‘𝑤) = 𝑁)) |
| 19 | 18 | ralrimiv 3124 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
| 20 | ral0 4462 | . . . . . 6 ⊢ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁 | |
| 21 | fvprc 6820 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅) | |
| 22 | 21 | raleqdv 3293 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁 ↔ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁)) |
| 23 | 20, 22 | mpbiri 258 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
| 24 | 19, 23 | jaoi 857 | . . . 4 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
| 25 | ianor 983 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
| 26 | rabeq0 4337 | . . . 4 ⊢ ({𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) | |
| 27 | 24, 25, 26 | 3imtr4i 292 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅) |
| 28 | 10, 27 | eqtr4d 2771 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
| 29 | 9, 28 | pm2.61i 182 | 1 ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {crab 3396 Vcvv 3437 ∅c0 4282 ‘cfv 6486 (class class class)co 7352 ℕ0cn0 12388 ♯chash 14239 Word cword 14422 Vtxcvtx 28976 ClWWalkscclwwlk 29963 ClWWalksN cclwwlkn 30006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-clwwlk 29964 df-clwwlkn 30007 |
| This theorem is referenced by: isclwwlkn 30009 clwwlkn0 30010 clwwlknfi 30027 clwlknf1oclwwlkn 30066 |
| Copyright terms: Public domain | W3C validator |