![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlkn | Structured version Visualization version GIF version |
Description: The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.) |
Ref | Expression |
---|---|
clwwlkn | ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6493 | . . . . 5 ⊢ (𝑔 = 𝐺 → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) | |
2 | 1 | adantl 474 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) |
3 | eqeq2 2783 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) | |
4 | 3 | adantr 473 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) |
5 | 2, 4 | rabeqbidv 3402 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
6 | df-clwwlkn 27530 | . . 3 ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) | |
7 | fvex 6506 | . . . 4 ⊢ (ClWWalks‘𝐺) ∈ V | |
8 | 7 | rabex 5085 | . . 3 ⊢ {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V |
9 | 5, 6, 8 | ovmpoa 7115 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
10 | 6 | mpondm0 7199 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = ∅) |
11 | eqid 2772 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | 11 | clwwlkbp 27481 | . . . . . . . . . 10 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅)) |
13 | 12 | simp2d 1123 | . . . . . . . . 9 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → 𝑤 ∈ Word (Vtx‘𝐺)) |
14 | lencl 13684 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → (♯‘𝑤) ∈ ℕ0) |
16 | eleq1 2847 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → ((♯‘𝑤) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
17 | 15, 16 | syl5ibcom 237 | . . . . . . 7 ⊢ (𝑤 ∈ (ClWWalks‘𝐺) → ((♯‘𝑤) = 𝑁 → 𝑁 ∈ ℕ0)) |
18 | 17 | con3rr3 153 | . . . . . 6 ⊢ (¬ 𝑁 ∈ ℕ0 → (𝑤 ∈ (ClWWalks‘𝐺) → ¬ (♯‘𝑤) = 𝑁)) |
19 | 18 | ralrimiv 3125 | . . . . 5 ⊢ (¬ 𝑁 ∈ ℕ0 → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
20 | ral0 4333 | . . . . . 6 ⊢ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁 | |
21 | fvprc 6486 | . . . . . . 7 ⊢ (¬ 𝐺 ∈ V → (ClWWalks‘𝐺) = ∅) | |
22 | 21 | raleqdv 3349 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁 ↔ ∀𝑤 ∈ ∅ ¬ (♯‘𝑤) = 𝑁)) |
23 | 20, 22 | mpbiri 250 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
24 | 19, 23 | jaoi 843 | . . . 4 ⊢ ((¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V) → ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) |
25 | ianor 964 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ↔ (¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V)) | |
26 | rabeq0 4219 | . . . 4 ⊢ ({𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅ ↔ ∀𝑤 ∈ (ClWWalks‘𝐺) ¬ (♯‘𝑤) = 𝑁) | |
27 | 24, 25, 26 | 3imtr4i 284 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅) |
28 | 10, 27 | eqtr4d 2811 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
29 | 9, 28 | pm2.61i 177 | 1 ⊢ (𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∀wral 3082 {crab 3086 Vcvv 3409 ∅c0 4173 ‘cfv 6182 (class class class)co 6970 ℕ0cn0 11700 ♯chash 13498 Word cword 13662 Vtxcvtx 26474 ClWWalkscclwwlk 27477 ClWWalksN cclwwlkn 27529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-fz 12702 df-fzo 12843 df-hash 13499 df-word 13663 df-clwwlk 27478 df-clwwlkn 27530 |
This theorem is referenced by: isclwwlkn 27532 clwwlkn0 27533 clwwlknfi 27551 clwwlknfiOLD 27552 clwlknf1oclwwlkn 27599 clwlknf1oclwwlknOLD 27601 |
Copyright terms: Public domain | W3C validator |