Detailed syntax breakdown of Definition df-cms
Step | Hyp | Ref
| Expression |
1 | | ccms 24401 |
. 2
class
CMetSp |
2 | | vw |
. . . . . . . 8
setvar 𝑤 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑤 |
4 | | cds 16897 |
. . . . . . 7
class
dist |
5 | 3, 4 | cfv 6418 |
. . . . . 6
class
(dist‘𝑤) |
6 | | vb |
. . . . . . . 8
setvar 𝑏 |
7 | 6 | cv 1538 |
. . . . . . 7
class 𝑏 |
8 | 7, 7 | cxp 5578 |
. . . . . 6
class (𝑏 × 𝑏) |
9 | 5, 8 | cres 5582 |
. . . . 5
class
((dist‘𝑤)
↾ (𝑏 × 𝑏)) |
10 | | ccmet 24323 |
. . . . . 6
class
CMet |
11 | 7, 10 | cfv 6418 |
. . . . 5
class
(CMet‘𝑏) |
12 | 9, 11 | wcel 2108 |
. . . 4
wff
((dist‘𝑤)
↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) |
13 | | cbs 16840 |
. . . . 5
class
Base |
14 | 3, 13 | cfv 6418 |
. . . 4
class
(Base‘𝑤) |
15 | 12, 6, 14 | wsbc 3711 |
. . 3
wff
[(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) |
16 | | cms 23379 |
. . 3
class
MetSp |
17 | 15, 2, 16 | crab 3067 |
. 2
class {𝑤 ∈ MetSp ∣
[(Base‘𝑤) /
𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} |
18 | 1, 17 | wceq 1539 |
1
wff CMetSp =
{𝑤 ∈ MetSp ∣
[(Base‘𝑤) /
𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} |