Detailed syntax breakdown of Definition df-cms
| Step | Hyp | Ref
| Expression |
| 1 | | ccms 25289 |
. 2
class
CMetSp |
| 2 | | vw |
. . . . . . . 8
setvar 𝑤 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 4 | | cds 17285 |
. . . . . . 7
class
dist |
| 5 | 3, 4 | cfv 6536 |
. . . . . 6
class
(dist‘𝑤) |
| 6 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 7 | 6 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 8 | 7, 7 | cxp 5657 |
. . . . . 6
class (𝑏 × 𝑏) |
| 9 | 5, 8 | cres 5661 |
. . . . 5
class
((dist‘𝑤)
↾ (𝑏 × 𝑏)) |
| 10 | | ccmet 25211 |
. . . . . 6
class
CMet |
| 11 | 7, 10 | cfv 6536 |
. . . . 5
class
(CMet‘𝑏) |
| 12 | 9, 11 | wcel 2109 |
. . . 4
wff
((dist‘𝑤)
↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) |
| 13 | | cbs 17233 |
. . . . 5
class
Base |
| 14 | 3, 13 | cfv 6536 |
. . . 4
class
(Base‘𝑤) |
| 15 | 12, 6, 14 | wsbc 3770 |
. . 3
wff
[(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) |
| 16 | | cms 24262 |
. . 3
class
MetSp |
| 17 | 15, 2, 16 | crab 3420 |
. 2
class {𝑤 ∈ MetSp ∣
[(Base‘𝑤) /
𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} |
| 18 | 1, 17 | wceq 1540 |
1
wff CMetSp =
{𝑤 ∈ MetSp ∣
[(Base‘𝑤) /
𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} |